second μ^- track. This is incorporated by requiring that the hadron shower have sufficient energy to produce a μ with momentum greater than 9 GeV and be momentum analyzable.

 $^{15}\mathrm{This}$ was obtained from Young *et al.*, Ref. 3, under the assumption that the semileptonic charm branching

ratio was 10%.

¹⁶Young *et al.*, Ref. 3, suggest that asymptotically x for events with $c\overline{c}$ production are the same as for all events.

 $^{17}\text{Obtained}$ from Ref. 4 by assuming $\mu^{-}\mu^{+}/\mu^{-}=0.65\times10^{-2}$.

Excited $K^{\pi} = 0^+$ Rotational Band in ²⁸Si

F. Glatz, P. Betz, J. Siefert, F. Heidinger, and H. Röpke Fakultät für Physik der Universität Freiburg, D-7800 Freiburg im Breisgau, West Germany (Received 1 October 1980; revised manuscript received 5 March 1981)

An excited $K^{\pi} = 0^+$ band in ²⁸Si which can be associated with the prolate Hartree-Fock solution has been observed in the reactions ${}^{25}Mg(\alpha, n\gamma)$ and ${}^{27}Al(\phi, \gamma)$. The $I^{\pi} = 0^+$ through 6⁺ band members have been located at $E_x = 6691$, 7381, 9164, and 11 509 keV, respectively. Strong distortion is indicated from B(E2) values, resulting in $|Q_0| = 876^{+110}_{-85}$ mb.

PACS numbers: 25.40.Ea, 27.30.+t, 21.10.Re

Hartree-Fock calculations of ²⁸Si yield oblate and prolate solutions which are nearly degenerate. Das Gupta and Harvey¹ proposed at an early stage that $K^{\pi} = 0^+$ rotational bands, which are based on the ground and 6691-keV states, be associated with the prolate and oblate solutions, respectively. Only the ground-state band has been observed so far² and its oblate nature has been confirmed.^{3,4} In this work we present evidence of an excited K^{π} = 0⁺ band from an investigation of the reactions ²⁵Mg(α , $n\gamma$) and ²⁷Al(p, γ).

The $(\alpha, n\gamma)$ measurements were performed by bombarding a $300 - \mu g/cm^2$ self-supporting ²⁵Mg foil with 14.5-MeV α particles. The 40-nA beam was provided by the 7-MV Van de Graaff accelerator of the University of Freiburg. Neutron- γ ray coincidences were measured with two 120 cm^3 Ge(Li) detectors and a neutron time-of-flight (TOF) spectrometer at zero degrees with respect to the beam at a distance of 2.5 m from the target. The TOF spectrometer consists of nineteen liquid-scintillation detectors in a quasiannular array. An identical spectrometer with only seven detectors has been used previously.^{5,6} Hence information concerning the quality of neutron and γ -ray spectra can be obtained from that work.

Complete $n-\gamma$ angular correlations were measured at six angles. Several hitherto unknown ²⁸Si levels of high spin were observed, among them an 11509 keV level. Its decay mode is given in Table I. The full Doppler shift of the 11 509 \rightarrow 6889 keV transition yielded a reliable lifetime limit $\tau(11509) < 30$ fs. (There was no evidence of a pos-

sible 11 509 \rightarrow 6879 keV transition which would affect the life-time measurement.) The $n-\gamma$ angular correlation of the same transition has (Fig. 1) the typical shape of a stretched $(I \rightarrow I - 2)$ quadrupole transition, thus suggesting a I = 6 assignment to the 11 509 keV level. A simultaneous fit to the correlations of both the 11 509 \rightarrow 6889 and 11 509 \rightarrow 9164 keV transitions yields at a 0.1% confidence limit a I = 6, 4 assignment to the 11 509 keV level and a $I^{\pi} = 4^{+}$ assignment to the 9164 keV level, which hitherto had⁷ $I^{\pi} = 3^{-}$, 4⁺. The lifetime limit of the 11 509 keV level implies positive parity of the level because otherwise it would have M2

TABLE I. Branching ratios (%) and multipole transition rates $B(\lambda, \mu)$ (Weisskopf units) of rotational states.

E_f (keV)	I_f^{π}	Branch	Β(λ, μ)		
	. 1	$1509 \text{ keV} I^{\pi}$	= 6 ⁺ state		
9164	4+	24 ± 2	>18	(E2)	
6889	$\hat{4}^{+}$	68 ± 3	>1.7	(E2)	
4617	4 +	8 ± 2	>0.03	(E2)	
8543	$\bar{6}^{+}$	< 2	$< 2 \times 10^{-3^{a}}$	(M1)	
	9	164 keV, $I^{\pi} =$	4 ⁺ state	、 ,	
7417	2 ⁺	4.5 ± 0.5	$11.5^{+3}_{-2}^{+3}_{-7}^{-6}_{-7}$	(E 2)	
7381	2^{+}	13.5 ± 1.0	32^{+8}_{-6}	(E2)	
6889	4^{+}	2.9 ± 0.3	$(20 \pm 5) \times 10^{-4}$	(M1)	
6879	3	1.9 ± 0.3	$(43 \pm 12) \times 10^{-6}$	(E 1)	
4617	4^{+}	30.8 ± 0.4	$(27 \pm 4) \times 10^{-4}$	(M1)	
1778	2+	46.4 ± 2.0	$(9 \pm 2) \times 10^{-2}$	(E 2)	

^aWe assume *b* (*E*2) < 36 Weisskopf units for the 11 509 → 9164 keV transition.

FIG. 1. Experimental $n - \gamma$ angular correlations of the 11 509 \rightarrow 6889 keV (full circles) and 11 509 \rightarrow 9164 keV transitions (crosses). The full and dashed curves are best fits for $6\rightarrow 4$ and $4\rightarrow 4$ spin sequences, respectively, of both transitions. δ stands for the quadrupole/dipole mixing ratios of the $4\rightarrow 4$ transitions.

transition[®]rates in excess of the recommended⁸ upper limit.

It is a well-known⁹ problem of angular correlation work that a stretched (I-I-2) quadrupole transition can always be simulated by a I-I transition with mixing ratio $\delta \simeq -1.2$. In the present case such a simulation would have occurred in both correlations of Fig. 1 if we assign I=4 to the 11 509 keV level. This seems very far fetched. In addition the 11 509 keV level is not populated⁷ in the well investigated reactions ²⁸Si(p, p') and ²⁴Mg(α , γ) nor has it been observed from the resonances of the reaction²⁷Al(p, γ). Also limits of 2% could be set on the branching ratios for the decay of the 11 509 keV level to all of the eight $I^{\pi} = 3^{+}$ and 2⁺ states below the 9164 keV level.

Since all these facts speak against the lowerspin assignment we adopt $I^{\pi} = 6^+$ for the 11509keV level. Its decay to the 9164 keV level then has B(E2) > 18 Weisskopf units. Because of this enhanced transition rate and a I(I+1) dependence of excitation energies it is compelling to propose a $K^{\pi} = 0^+$ rotational band with the 6691, 9164, and 11509 keV levels as the $I^{\pi} = 0^+$, 4^+ , and 6^+ members, respectively, and one of the $I^{\pi} = 2^+$ levels at 7381 or 7417 keV excitation energy as the I^{π}

To further substantiate this idea we have completely reinvestigated the properties of the 9164 keV level using the reaction ²⁷Al(p, γ) at the E_p = 2160 and 2312 keV resonances. Targets of 30 μ g/cm² ²⁷Al on a tantalum backing were bombarded with a 8- μ A proton beam. γ -ray singles spectra were taken on and off resonance with high statistical accuracy and 2.2 keV energy resolution at the ⁶⁰Co energies. Six decay modes of the 9164 keV level were observed of which only the two strongest ones were known⁷ previously. A lifetime measurement by the Doppler-shift attenuation method exactly confirmed the reported value¹⁰ $\tau(9164) = 37 \pm 5$ fs.

The 9164 keV level decays with enhanced E2 transition rates (Table I) to both the 7381 and 7417 keV levels, thus supporting the idea of ro-

	Q_0 (mb)		q (=a/b)			
	Expt.	HF^{a}	$Expt.^{b}$	HF^{c}	δ ^d	θ/θ_R^e
²⁰ Ne(g.s.)	488 ± 24	478	1.43 ± 0.02	1.46	0.32 ± 0.01	0.82 ± 0.04
24 Mg(g.s.)	575^{+48}_{-53}	665	1.42 ± 0.04	1.47	0.31 ± 0.01	0.69 ± 0.04
²⁸ Si(exc.)	876^{+110}_{-85} or - 876^{+85}_{-110}	945	$\begin{array}{c} 1.52 \pm 0.06 \text{ or} \\ 0.55 \substack{+ 0.03 \\ - 0.08 \end{array} \end{array}$	1.53	0.35 ± 0.03 or - $0.55^{+0.07}_{-0.11}$	$0.80 \pm 0.06 \text{ or}$ 1.06 ± 0.07
²⁸ Si(g.s.)	- 480 ± 20	- 723	0.86 ± 0.04	0.55	-0.27 ± 0.01	$\textbf{0.61} \pm \textbf{0.04}$

TABLE II. Properties of $K^{\pi} = 0^+$ rotational bands in doubly even N = Z nuclei compared with Hartree-Fock (HF) calculations.

^a From Tables 7b and 8 of Ref. 12.

^bDefined by $Q_0 = (2ZR^2/5)(q^{4/3}-q^{-2/3})$.

^c From Table 7b or Ref. 12 with use of $D_0^M = 2(q^{4/3} - q^{-2/3})/(q^{4/3} + 2q^{-2/3})$.

^dDefined by $q = (1 + 2\delta/3)^{1/2}/(1 - 4\delta/3)^{1/2}$.

^eDefined by $\theta_R = (MR^2/5)(q^{4/3}+q^{-2/3})$.

tational structure. The *E*2 strength of the $4^+ \rightarrow 2^+$ in-band transition is evidently split which is not surprising in view of the near degeneracy of the final states. Thus the total collective *E*2 strength amounts to the sum of the two transition rates to within, say 1 Weisskopf unit. The 7381 keV level is more collective than the 7417 keV level.

Table II gives the properties of the new band compared to the properties of the ²⁰Ne, ²⁴Mg, and ²⁸Si ground-state bands. The experimental input parameters are the rotational constants $\hbar^2/2\theta$ and the intrinsic quadrupole moments $|Q_0|$ derived, for the sake of consistency, from the B(E2)'s⁸ of the $4^+ \rightarrow 2^+$ in-band transitions. It seems to be a rule that the use of the $2^+ \rightarrow 0^+$ transition rates would lead to a 10% increase of $|Q_0|$. Deformation and rigidity of bands are deduced assuming ellipsoidal nuclei with axial symmetry, sharp surface, homogeneous charge and mass distribution, and volume $V = \frac{4}{3}\pi R^3$. The nuclear radius $R = (1.06A^{1/3} + 0.75)$ fm was chosen in accordance with Anderson, Wong, and McClure.¹¹ All relevant quantities are rigorously expressed in the footnotes of Table II in terms of q = a/b, where a is the elongation of the ellipsoid in the direction of the symmetry axis and *b* the elongation along a perpendicular axis. Nilsson's deformation parameter δ is included for convenience.

The possibility of an oblate shape in the new ²⁸Si band was considered and discarded because the moment of inertia θ would exceed or at least reach the rigid-body value θ_R . Hence an association of the new band with the prolate Hartree-Fock (HF) solution is preferred. Good agreement is in fact obtained with HF calculations that employ major-shell mixing.^{12,13} The near equality of distortions in the prolate bands of ²⁰Ne, ²⁴Mg, and ²⁸Si is reproduced by the theory as well as the values of Q_0 . In the oblate band of ²⁸Si the distortion is somewhat overestimated by the calculations.

In conclusion it appears that the prediction from HF theory of both oblate and prolate rotational bands in ²⁸Si is now, after fourteen years, supported experimentally.

This work was supported by Deutsche Forschungsgemeinschaft.

¹S. Das Gupta and M. Harvey, Nucl. Phys. <u>A94</u>, 602 (1967).

²S. T. Lam, A. E. Litherland, and T. K. Alexander, Can. J. Phys. 47, 1371 (1969).

³D. Pelte, O. Häusser, T. K. Alexander, B. W. Hooten, and H. C. Evans, Phys. Lett. 29B, 660 (1969).

⁴G. C. Ball *et al.*, Nucl. Phys. A349, 271 (1980)

⁵P. Betz and H. Röpke, Z. Phys. <u>261</u>, 351 (1973).

⁶P. Betz, G. Braun, G. Hammel, and J. Urban, Nucl. Instrum. Methods 119, 199 (1974).

⁷P. M. Endt and C. van der Leun, Nucl. Phys. <u>A310</u>, 1 (1978).

⁸P. M. Endt, At. Data Nucl. Data Tables 23, 3 (1979).

⁹P. J. Twin, in *The Electromagnetic Interaction in Nuclear Spectroscopy*, edited by W. D. Hamilton (North-Holland, Amsterdam, 1975), p. 701.

¹⁰M. A. Meyer, I. Venter, and D. Raitmann, Nucl. Phys. A250, 235 (1975).

¹¹J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. 138, B615 (1965).

¹²J. Zofka and G. Ripka, Nucl. Phys. <u>A168</u>, 65 (1971).
¹³P. O. Sauer, A. Faessler, H. H. Wolter, and M. M.

Stingl, Nucl. Phys. <u>A125</u>, 257 (1969).