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K-S mode appears first on the outside of the field
null after an ion transit time. Since the gradient
in density is directed towards the null, any ac-
celeration towards the null has the correct sign
for the K-S mode. We have run simulations with
these new parameters and find that this picture
is qualitatively correct.

While our simulations have focused upon ex-
plaining the formation process in FRX experi-
ments, the results have more general signifi-
cance. If we consider the reconnection rate, de-
fined in the usual manner in the reconnection
literature, ' as the influx rate of fluid toward the
X point, we find that this velocity is comparable
to the Alfvdn velocity. We have already noted in
our simulations that self-consistent toroidal field
production is necessary for rapid reconnection.
This result strongly suggests that it is a rotation-
al discontinuity in the magnetic field, as suggest-
ed by Hameiri, ' and not the slow magnetosonic
shock which is responsible for the reconnection.
The simple MHD model contains no mechanism
that will produce self-consistent B in axisym-
metry, if it is not initially present and if there is
no initial toroidal flow. In a non-MED fluid de-
scription, it is the gyroviscous stress terms in

the pressure tensor which are responsible for
finite B &. This kinetic effect produces B scale
lengths on the order of the ion gyroradius and

can provide a channel for enhanced diffusion of

B,. The axial field is rotated into small scale
B6 structures by the action of the K-S mode and

ion kinetic effects. Because of rapid spatial
variation, the field can now be dissipated much
more rapidly by classical resistivity.
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The nonlinear behavior of the m = 1 instability is investigated within two-fluid theory.
In contrast to the purely resistive case, the mode is found to saturate at a finite ampli-
tude if diamagnetic effects are sufficiently strong. The main stabilizing process is a
nonlinear azimuthal shear flow.

PACS numbers: 52.35.-g, 52.55.Gb

In toroidal current-driven plasma configura-
tions, the mode with dominant poloidal- and to-
roidal-mode numbers (m, n) =(1, 1) plays an im-
portant role. It is believed to give rise to the so-
called sawtooth oscillations or internal disrup-
tions, which periodically mix the central with
the surrounding plasma. Since in ideal-magneto-
hydrodynamics theory the m = 1 mode is either
stable, "or, if unstable, saturates at a small
amplitude, ' nonideal effects dominate the nonlin-
ear behavior. Qf these, resistivity g is the most
important for low temperatures. In this regime

the nonlinear properties are quite well under-
stood. Computer simulations' have confirmed
the picture given by Kadomtsev, ' i.e., a magnetic
island growing without saturation until filling the
whole volume inside the original q =1 surface. It
is said that the mode leads to complete reconnec-
tion of the helical magnetic flux enclosed. This
process gives a very plausible explanation of the
internal disruption.

For higher plasma temperatures, however,
further effects such as diamagnetic drifts have to
be considered. Their main influence on the lin-
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= gj+a[(T, + y&T,.)/n]z. (Vn&& Vg), (2)

ear m=1 mode is a reduction of the growth rate,
if the diamagnetic frequency exceeds the resistive
growth rate, e~ & y„,"quite similar to that in the
case of m ~ 2 tearing modes. The nonlinear
properties in this regime, however, have not yet
been studied. Instead it had tacitly been assumed
that, as for m ~ 2, diamagnetic effects do not
change the general nonlinear behavior. '

Motivated by recent experiments such as PI T"
and ASDEX,"where under certain conditions
quasisteady m = 1 oscillations have been observed,
we have investigated the m =1 instability in the
nonlinear regime including diamagnetic drifts,
viscosity, and plasma diffusion. Our model equa-
tions are based on two-fluid theory, hence ne-
glecting kinetic effects. It is true that recent ad-
vances in the linear theory have shown the impor-
tance of a kinetic treatment of the electrons. ""
But kinetic electron processes, which are con-
fined to a tiny layer around the unperturbed reso-
nant surface, become strongly modified and prob-
ably less effective even for very small ampli-
tudes. In addition anomalous processes, which
dominate electron transport in all known toka-
maks, strongly increase the electron collisionali-
ty as compared with the classical value. We
therefore believe that the two-fluid approach is a
reasonable basis to describe the gross nonlinear
behavior of the m = 1 mode in a hot tokamak plas-
ma.

Since the model equations have already been
discussed previously (see, e.g., Ref. 7), we only
briefly outline the main approximations implied.
Regarding geometry we restrict ourselves to the
lowest order in the so-called tokamak expansion
with the inverse aspect ratio a/R«1 and the ratio
of poloidal to toroidal magnetic field components
Be/B, a/R. The equilibrium has cylindrical
symmetry, while the perturbed state is helically
symmetric, depending only on r and e —r/R. We
note that in this approximation the ideal m = 1
mode is marginally stable. The magnetic field is
written in terms of the helical flux g and the to-
roidal field B,=B,= const:

B = h && V g + B,h = zx V g + B,h, — (1)

where h = z+(r/R)g is a vector in the symmetry
direction. With neglect of the electron inertia
and electron viscosity and under the assumptions
that ViiT, =O and Vp,. =y, T, Vn, the equation for g
becomes

8$/Bt+ u V(

where j= V'g+ 2B,/R .The incompressible part
u =~ & Vy of the ion velocity is determined by the
vorticity W = V (n Vy), which obeys the equation

BW/Bt+(u —v,„) VW —E (Vnx V2u')

=B ~ Vj+ p, V'W, (3)
while the equation for the particle density n (=n,
=n, ) is

Bn/Bt+ u Vn = nB ~ Vj+ tcV'n. (4)

The terms p V'W and v,.~ .VW (with v,~, the ion
diamagnetic velocity) represent the effects of
collisional viscosity and gyroviscosity, while
zV'n =- (V v, n) takes into account anomalous
particle diffusion due to microfluctuations not con-
tained in the macroscopic description. Equations
(2)-(4) are written in dimensionless form, with
use as units of a (the wall radius), n(r, ) (with r„
the radius of the resonant surface), Be(a), and
the poloidal Alfvdn velocity vA. The equations
contain several small diffusion coefficients, g, p, ,
and w; typical values in tokamaks are g-10 '-
10 ', p, -0.lq for classical viscosity, and a ~10'
is the effective particle diffusion. A further
small parameter is a =(c/v~, )Be(a)/B„which to-
gether with T, , measures the magnitude of the
diamagnetic frequencies ao, = —o. T,n'/n and &u,.~
= o.y,.T,n'/n.

We have solved Eqs. (2)-(4) numerically for
various values of the parameters using the equi-
librium current profile j,= 2(1+s ')/(1+ r'/s')'
with s =0.6 and q(1) =3.4, hence q(0)=0.9 and r,
=0.2, and choosing a typical bell-shaped density
profile. The numerical method uses a finite dif-
ference scheme in r and a Fourier decomposition
in 6. The principal result is that for large dia-
magnetic frequencies, such that ~,~/y„= 2, the
Kadomtsev picture of complete flux reconnection
is no longer valid. Instead the instability satu-
rates at a finite island size. Figure 1(a) shows
the evolution of the flux perturbation g(r, ) for
g=5&&10 ', p. =10 ', le=10 ', and &u,~/y„=2. 7.
The saturated width of the magnetic island is
0.1x,.

In order to identify the main saturation process
we neglect higher-order harmonics, i.e., consid-
er the quasilinear approximation, which we find
to give qualitatively the same nonlinear behavior
as the exact equations. By artificially freezing
two of the average profiles j,(r), n, (r), and W,(r),
we find that the quasilinear change DR', provides
the dominant stabilizing effect, Hence, in con-
trast to m ) 2 tearing modes, which saturate by
a change of the current profile djo, inertia plays
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The imaginary part of the expression in brackets
in (11) is the only term where 6W ' e
m +i(o„)/I']= yu+/e', one has, for the brack-

eted factor in Eq. (11),
FIG. l. (a) Time evolution. of the real
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, and at saturation, t =5x 10
Im([ ]]=r, '6W, '+(x'E'/71)ycug/(o'. (12)

the most im portant role in saturating the m =1
instability. Fi re 1 b
tern x 0

gu ( ) shows the convection p t-
y(, ) in the linear phase and at saturation.

ion pa-

Starting from these results we set u a
linear desc ' tiocrap &on, restricting ourselves to the
regime eg» y„, .where amplitudes are small, as
we shall see. From Eq. (4), we obtain

sw, /st =(z vy && vf) + w "8 e P, (5)

where $ in the nonlinear'near term is approximated b
the linear eigenfunction'

e y

g= $,[exp(-Ax'/2) Ax J„—e x(p-Ay'/2)dy] 6

where A = [y+ i((u„—~)/g), a& =(u —(u x
=x- r . For

gg
For p, «g the viscosity in E . '5'

g g' . Integration yields 6y '= Im(gg"*]/
yr fromy „m which one computes 5W'0'= 5y '~ at

0

x = 0, with use of (6),
0 0

6W. '=(2/ .)[( * — )/n'] I tc. I'.

It is interestin to'
g o compare the magnitude of

the nonlinear flows for m=1 dan rn ~2. In Ref.
14, it was derived that

6p, '=-(m/r, )[((u —(u„)/yg] i g i'.S (8)

This is small for rn) 2 s' th ensince the fre uen

m =, where &u —(u* - &u+. ' Writing Eqs. (2)-(4)

To obtain the value of 6g '
the row

necessary to change
e growth rate substantially, we set (12) equal

to x F (og y /'11(d

rate for QVp'=0. For
y, = y„~,~+,~ being the growth

0 0r y 0 this re latio n bee omes

r, '
6W, '=( x'oE' /q)y (o /(u'

w o e saturation ampli-which yields an estimate of th
u e g„where x, is of the order of the curr

width 5 =2 Er ' 'i,= 11 y,
' '=~+/E or the island half

(g,/ r,), whichever is larger. It

find the saturation ampl'tude

g, -=r,Eq/&u~. (14)

The result isult is in good agreement with the numeri-
cal simulations for +~ )3
note that Eq. 13 im

y„. It is interesting to
t tha q. ( ) imphes a nonlinear flow of the

order of the diamagnetic velo 'toci y r, ~+ confined
to a region 6, around r, .

For anomalou
ha.nd

alously large viscosity & th e left-

mate
sade of (5) can be neglected. Ac e . crude esti-

ma e of the saturation amplitude in this case
gives the se somewhat larger value g =— w)' '/

l ~

~, which results from the d tre uc ion of the non-
xnear flows due to viscosity.

In the transition region +*-
1 inc

*-y„, where g, rapid-
~, p asma diffusiony increases with decreasing &+ l

is important in preventing quasilinear flattening
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of the density profile, which would otherwise
quench the diamagnetic frequency as discussed in
Ref. 14, and thus lead into the regime ~+ & y„,
where complete reconnection occurs. Hence for
large amplitude the saturation value depends
strongly on K. It also appears from the simula-
tions that in the transition regime the saturation
process as described here does not lead to a com-
pletely stationary island configuration, but that
growth continues, though on a much slower time
scale.

In conclusion, we have shown by numerical sim-
ulations as well as analytical considerations that
for sufficiently large diamagnetic drifts the m =1
resistive kink mode in a tokamaklike configura-
tion saturates at small island size. In contrast
to nz «2 tearing modes, the saturated configura-
tion does not represent an equilibrium with j
=j(g), but contains a strong azimuthal flow of the
order and in the direction of the electron diamag-
netic velocity. Applying the results to tokamak
experiments, we see that internal disruptions
only occur when the current peaking and the quasi-
linear density flattening is large enough, so that
y„a ~,~. It may, however, happen that the pres-
ence of a finite m =1 island increases the energy
loss from the central part in such a way that y„
will not grow any further. This would lead to
(quasi-) stationary m = l oscillations as observed
recently '0'"
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It is shown that very-low-frequency magnetic modes may be unstable for systems such
as tandem mirrors which contain plasma trapped in regions of unfavorable curvature.
Onset of the instability occurs when the diamagnetic plasma pressure is sufficient to re-
verse particle drift velocities.
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At very low frequencies the motion of plasma is
no longer governed by the familiar E && B/B' drift,
but rather by the magnetic (VB and curvature)
drifts. If the magnetic field is perturbed, the
drift orbits of course change, and we may give
the following crude picture of an instability if

~
B

~

is perturbed by an amount B,(x) Trapped.
particles (with small v

~, ) tend to move on con-
stant-B surfaces. Thus the pressure of these
particles is nearly a function of

~
B

~
and the per-

turbed pressure due to the fraction, f, of these
trapped particles is p, =+fB, ~ Vp, ) /) VB, ~. The
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