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Thermodynamics of an Ultrarelativistic Ideal Bose Gas
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We discuss the properties of an ideal relativistic Bose gas with nonzero chemical po-
tential p, (i.e., with net charge) but differ from all previous discussions by including the
effects of antiparticles. We obtain for the first time the relevant high-temperature ex-
pansion, emphasizing the constraint ~p) ~rn, and show that a box of massless particles
can have a net charge even though p = G. Finally, we discuss the properties of Bose-
Einstein condensation for both massless and massive bosons in 4 space dimensions.

PACS numbers: 05.30.Jp, 03.30.+p, 05.70.Ce, 05.70.Fh

There have recently been a number of papers' '
which discuss the properties of an ideal relativis-
tic Bose gas with nonzero chemical potential p,.
Particular attention has been focused on the be-
havior of the Bose-Einstein condensation and the
nature of the phase transition in d space dimen-
sions. The ground work for these recent papers
was laid many years ago in the work of Juttner'
and Glaser' and more recently by Landsberg and
Dunning-Davies' and Nieto. ' These past works
have all been in the context of relativistic quan-
tum mechanics. At temperatures larger than the
mass of the particles, quantum field theory re-
quires the inclusion of particle-antiparticle pair
production.

To describe an ideal Bose gas in the grand
canonical ensemble, the'natural expression for
the number of bosons N in relativistic quantum
mechanics is

N - exp[ P(F-„t) ] —1 '—
where E„=(h'+ )m' ' and p = T ' (in units of h = c
=h = 1), and we must require p. - m in order to
ensure a positive-definite value for n„, the num-

ber of bosons with momentum k. The assumption
made here is that N is a conserved quantity so
that it makes sense to talk of a box of N bosons.
This can no longer be true once T ~ m; at such
temperatures the production of particle-antipar-
ticle pairs becomes important. If N is the num-

ber of antiparticles, then N and N by themselves
are not conserved but N-N is conserved. There-
fore the high-temperature limit of (1) is not rel-
evant in realistic physical systems. '

More generally, one may consider any ideal
Bose gas with a conserved quantum number
(which we will refer to generically as "charge").
The conserved quantum number corresponds
to a quantum mechanicai operator Q which
commutes with the Hamiltonian II. All thermo-
dynamic quantities may be obtained from the
grand partition function Tr (exp[-P(H —Q)] j
considered as a function of T, V, and p. ' Ab
initio, one might think that particles and antipar-
ticles could have independent chemical potentials.
However, the fundamental structure of relativistic
field theories requires that if the eigenvalue of Q

is +1 for particles, it must be -1 for antiparticles
(i.e., all additive quantum numbers are reversed).
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The formula for the net conserved charge, which replaces (1) in quantum field theory, is

1 1v=Z
exp[ P(F. »

—p.)] —1 exp[ P(E» + p,)] —1
(2)

Note that if we regard the expression above as a sum over n„—n,„then we may loosely say that par-
ticles and antiparticles have chemical potentials which are opposite in sign. More precisely, only one

chemical potential p, describes a system of bosons ——.he sign of p, indicates whether particles outnum-

ber antiparticles or vice versa. Equally important is the realization that both n, and vs„must be posi-
tive definite. This leads to the important conclusion that

l p. l

~m. "'"
Before turning to a general analysis, let us quickly use (2) to learn something about Bose-Einstein

condensation of the relativistic Bose gas. As in the usual analysis, the sum over k in (2) is converted

to an integral so that the charge density p=-Q/V becomes

1 1
p =

2 ~ k'dk -- — —— — — —(N - —p.)2~' J, exp[ P(Z» —p.) ] —1

Note that (3) is really an implicit formula for p,

as a function of p and T. For T above some criti-
cal temperature T„one can always find a p,

(satisfying l p, !&m) such that (3) holds. Below
T„no such p, can be found and we interpret (3)
as the charge density of the excited states: p —p„
where pp is the charge density of the ground state.
The critical temperature T, at which Bose-Ein-
stein condensation occurs corresponds to p, =~rn

(the sign depending on the sign of p). Thus, we

set
l pl =m in (3) and obtain an implicit equation

for T, in terms of p. In the region T, »m we

easily obtain

m -, e'"
Ipl „2 0'dk(- g»- ——),—= 3mT2,

0

which implies

T, =(3!pl/m)'~'

Below T„(4) is an equation for p —p„so that
the charge density in the ground state is

p. = pl. 1 —(T/T. )'].

(5)

(6)

We note that (5) leads to the important result that

any ideal Bose gas of mass m will Bose-Einstein
condense at a relativistic temperature (i.e. , T,
»m), provided that p»m'. Conversely, in the
nonrelativistic regime we may apply the standard
textbook results' to see that T, «m, provided
that p «rn'.

The T' behavior in (6) is to be compared with a
T' behavior one finds in the literature. ' ' The
difference is due to the fact that previous authors!

(3)

! have based their analyses on (1) rather than (2).
It is important to notice that if T, is calculated
from (1) it will be independent of m, in contrast
to our result (5). This observation has important
consequences for the m -0 limit. Consider the
following observation: If p=0, then (2) requires
that Q= 0. But what a,bout the ca.se of charged
massless bosons": The requirement l p. l

~m
implies that p, =0 for massless particles; so how

can one have a net charge 7 The answer is found

in (5) and (6): For m =0, it follows that T, = ~
and hence p = pp That is, all net charge of an

ideal gas of massless bosons resides in the Bose-
Einstein —condensed ground state. (Of course,
for a photon gas no conserved quantum number
exists so that Bose-Einstein condensation does
not take place. )

To discuss more fully the relativistic ideal Bose
gas requires calculating the high-temperature
expansion of (3) and of other thermodynamic
variables. For the case p, =0, the high-tempera-
ture limit was computed by Dolan and Jackiw. "
The case of p g0 is far more complicated; Arago
de Carvalho and Rosa' discuss errors in the pre-
vious attempts to calculate the high-temperature
limit of (1). They obtain an expansion of (1)
which they note is valid only for p, &0; hence
their expansion is not applicable to (2).

The first step is to introduce dimensionless
variables x —= Pk, m =—Pm, and r = p/m (note that

lr! -1). The integrals that must be evaluated
are of two types:

1 " x' 'dx 1

&(& ) (x'+ m') '~' exp[(x' + m') '~' —rm ] —1
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For example, the pressure is P =(4T'/77')H, and the charge density is p=(T'/77') G, . The functions G,
and H, satisfy recursion relations:

d G, +,/dm = lr H, +, —ml 'G, , +m'r l 'H, »
dH„, /dm =rl 'G, , —ml 'H, ,

(8)

The high-temperature expansion we seek is an expansion in m ((1 (for any lr I
- 1) lf one»mpiy ex

pands the integrands of (7) in powers of m, the result is a power series whose coefficients are, in gen-
eral, divergent integrals. To avoid this difficulty, we make use of the following identity

1 1 1
e' —1 y 2 ~, y +(277k)

A convergence factor x ' is inserted to ensure that term by term, all integrations are finite. At the
end of the calculation we may safely take e -0. Applying (9) to the calculation of G, and H, yields the
following expansions in m:

C70 2k+1

G,(m, r) =(»» rm + 277r—p a „g(2k + 1) — (—1)"",
k=1 27T

H, (m, r) =—,T2- +ln +y P b~ f(2k+1) —
I (—1)

m m &'k

m 1— k=1 277

(10)

where m has been taken positive. In the above, y is Euler's constant; a, =1, a, =2v'+ 2, b, =r'+~,
b, =r'+3r'+ &, etc. ; and g(2k+1) is Riemann's zeta function. Knowledge of G, and H, along with the re-
cursion relations (8) is sufficient to obtain all the necessary functions which describe the thermody
namics in three space dimensions. " The results" (for T & T, ) are

12 677 24772 1677 477T T

p.T(m2 —
Iu )

' p(3m' —2 p, ) p, m
7'

I

S 477'Z T(m —2 p') (m —Iu')' ' m m' m' p'&

V 45 6 677 1677'T T' ' T' j

(i2)

(13)

(i4)

p= ----ln, + +OI
m —p pT (/urn

2m T2 71 ( T j
(17)

lf mg0, then for finite p the point I pl=m can
never be reached for any value of T. That is,
there is no Bose-Einstein condensation in two
dimensions for massive particles (one can see
that T,=O as p-m w0). However, because

I p, l

~ m, the limit m -0 (which forces p, - 0) is not
smooth. It is consistent to have T, -m " (0&5
& 1) and satisfy (17) in the limit of p, -m -0.
This indicates that T, = ~ for massless particles
and hence Bose-Einstein condensation does oc-
cur for massless bosons in two dimensions. Al-
ternatively, if we follow the logic of Landau and
Wilde" in the case of p, =m =0, we would write

dc~ I dc~
dT z dT

C C

It is also of interest to investigate Bose-Ein-
stein condensation in an arbitrary number of di-
mensions. The general formula for the charge
density in d space dimensions is

3277 Q-
Sm

p= 77
1'+'~' r((d+1)/2) T"G~(m, r) . (16)

Consider first thermodynamics in d = 2 space
dimensions. Note that (10) and (8) only give us
G„ for odd d. Separate calculations are needed
for G, and H, in order to obtain rby using (8)] the
thermodynamic quantities in the case of even d.
The methods are the same as before and we find

p —p, =lim lim G, (m, r) .T2

r~i m-+0
(18)

Using (17) and (18) we conclude that p= p„ i.e.,

and the energy is U=TS —PV+ p,pV. For m= p,
= 0 we recover the usual photon results. " Clearly, that"
too, our earlier discussion in (4)-(6) of the phase
transition is verified in (13). From these results
we can show that the specific heat, c~, is con-
tinuous at T, but has a discontinuity in its deriva-
tive given by

1499



VOLUME 46, NUMBER 23 P HYSICAL REVIEW LETTERS 8 JUNr. 1981

all net charge is in the Bose-Einstein-condensed
ground state. The conclusion that massless par-
ticles condense in two dimensions agrees with re-
cent claims in the literature. "

Lastly, we consider the case of one space di-
mension. We may obtain the charge density im-
mediately from (10) since p = TG,/v. It is clear
that there is no Bose-Einstein condensation no

matter what the mass is. Note that in this case,
massless particles can have net charge density
even though p, =0 and no condensation takes place.
The reason is that in this case the parameter r
= p/m survives the p. -0, m -0 limit and can
characterize a nonzero charge density.

In summary we have given for the first time the
high-temperature expansion of an ideal relativis-
tic Bose gas when p, g0, taking antiparticles into
account. Although the expansions of thermody-
namic quantities are not analytic at m =0, they
do possess smooth limits as m -0 (as long as
we remember that i pi (m); in this limit, we

recover the photon-gas results. Furthermore,
these expansions allow us to study Bose-Einstein
condensation which takes place when

~ pi -m.
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