COSMOLOGICAL DENSITY FLUCTUATIONS PRO-DUCED BY VACUUM STRINGS. Alexander Vilenkin [Phys. Rev. Lett. 46, 1169 (1981)].

On the fifth line after Eq. (1), " $\omega \sim 10^{-2}$ " should be replaced by " $\alpha \sim 10^{-2}$." In the line following Eq. (3), replace " $t \gg t_* \sim 10^{34}$ s" by " $t \gg t_* \sim 10^{-34}$ s."

The text and equations from Eq. (11) to Eq. (13) are very confusing, because the string mass density μ and the galactic mass \mathfrak{M} are both printed as μ . The text should have read

$$\delta \mathfrak{M}_{M} \sim \left[\nu(M) M^{3} L^{3}\right]^{1/2} \propto M^{1/4}.$$
 (11)

This implies that the dominant contribution to $\delta \mathfrak{M}$ is given by the largest loops which the region under consideration can be expected to contain: $\delta \mathfrak{M} \sim M_{\max}$, where $\nu (M_{\max}) \mathcal{M}_{\max} L^3 \sim 1$. The total mass of matter on scale *L* is $\mathfrak{M} \sim \rho_{\text{dec}} L^3 \sim L^3 / Gt_{\text{dec}}^2$, and we obtain

$$(\delta \mathfrak{M}/\mathfrak{M})_{\text{dec}} \sim M_{\text{max}}/\mathfrak{M} \sim G \mu (t_{\text{dec}}/G \mathfrak{M})^{1/3}.$$
(12)

Objects of mass \mathfrak{M} bind at $t \sim t_B$ when $\delta \mathfrak{M} / \mathfrak{M} \sim 1$:

$$t_{B} \sim t_{dec} (\delta \mathfrak{M} / \mathfrak{M})_{dec}^{-3/2} (G \mu)^{-3/2} (G \mathfrak{M} t_{dec})^{1/2} \sim 10^{3} (G \mu)^{-3/2} (\mathfrak{M} / M_{\odot})^{1/2}.$$
(13)

For galactic mass scales ($\mathfrak{M} \sim 10^{12} M_{\odot}$) to bind at