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erogeneity than are the extrapolated high-field
data.

Thus the amorphous particles produced by
spark erosion appear to have a significantly high-
er degree of chemical disorder than do amor-
phous ribbons of the same composition because
of the higher quench rate from the liquid. The
decreased CSRO is reflected in lower p. F„T„
K,~, and other consistent changes in P(K). An
anomalously wide transition in the critical region
in low applied fields is puzzling in view of a more
regular behavior in the critical region in high
fields. However, it is clear from the above that
amorphous ribbon represents only one class of
the amorphous state.
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Spin Waves in a Disordered Medium: A Simple Model with a Mobility Edge
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A computer simulation of an isotopically disordered harmonic crystal with positive
and negative masses is presented. This system may be related to a Heisenberg-
Mattis random magnet, for which our results give the elementary excitations. Ideas of
percolation theory are employed to explain the existence of a mobility edge in two and
three dimensions whenever the positive or negative masses, but not both, percolate. For
the corresponding random magnet this implies a new kind of magnon spectrum in which
localized and extended states coexist.

PACS numbers: 75.10.Jm, 63.50.+x

Spin waves are delocalized boson excitations.
They were found' as elementary excitations in
quantum spin Heisenberg models describing or-
dered media with translational invariance. How-
ever, it has remained unclear whether spin waves
can exist in a disordered medium without transla-
tional invariance or a well-defined wave vector
k. To examine this question we consider the
Heisenberg-Mattis model" of a random magnet,

characterized by the Hamiltonian

&=-Q $,. $,.J,.S( )tS(j).

The J'&&= J(~i j~)~0 represe-nt a finite-range in-
teraction on a d-dimensional cubic lattice, and
the $,.'s are independent, identically distributed
random variables taking values +1 and —1 with
probabilities p and q =1 —p, respectively. Fixing
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p we may take (S,(i))= ), S as the classical Noel
ground state. The model is of some relevance' to
the spin-glass problem, particularly for P =q = —,',
since it may exhibit frozen magnetism without
long-range order.

In this Letter, we examine the excitation spec-
trum by exploiting the equivalence' of this model
to an isotopically disordered harmonic crystal
with positive and negative masses. We find no
spin waves in one dimension, spin waves when

P & 1 -P, or P &P, in two dimensions, and spin
waves for all P in three dimensions; P, is the
percolation threshold. In many cases there are
also localized states in the same energy domain.
This is best understood in terms of a mobility
edge in the equivalent disordered crystal.

The equations of motion for the S+(j) may be
linearized about the ground state, through
S,(i):=(S,(i)), so as to read

i 8 S+/at= 4 US~. (2)

Here we have defined the diagonal unitary matrix
U via (Ux),. = $,.x,. ; since $,.'=I, U= U '= Ut. For
convenience we consider nearest-neighbor inter-
actions only, and put J, ,„S=1. Then 4 is noth-
ing but the negative of the discretized Laplacian,

( C x },= (2d)x,. — Q xq,

where the sum is over all nearest neighbors j of
the site i.

Equation (2} leads to the classical eigenvalue
problem

The last equation makes clear the relation to an
isotopically disordered harmonic crystal; 4 may
be interpreted as the interaction matrix and U as
the mass matrix, with masses g,. = +1. In deter-
mining the eigenstates of U4, ' one may take ad-
vantage of the ideas and intuition which have been
developed for the usual isotopic disorder prob-
lem. '

A complete solution of the elementary excitation
problem involves transforming the Hamiltonian
(1) into a quadratic boson Hamiltonian by use of a
Holstein-Primakoff transformation. This gives
the Bose-Einstein statistics which does not follow
from (2). In diagonalizing the resulting Hamilto-
nian one then discovers" (a) that the relevant
symmetry is hyperbolic [O(n, n)I instead of or-
thogonal [O(2n) j; (b) that the eigenvectors of UC

determine the diagonalizing transformation com-
pletely; (c) that an eigenvalue u of UC corre-
sponds to an elementary excitation of energy
k~ e~—the absolute value of u must be used. Ei-
genstates of U4 may be localized or delocalized,
and map into localized or delocalized elementary
excitations of X. The delocalized eigenstates
correspond to spin waves.

Our procedure to exhibit localization and to find
a mobility edge is straightforward in principle,
although computationally somewhat expensive. We
choose a large random U, find all the eigenvalues
and eigenvectors of U4, and examine the inverse
participation ratio (IPR), '

Qx,.'/(g, x,.')',
UCx=~x,

or equivalently, as U= U ',
(4)

(5)

of each eigenvector x. Delocalized states are ex-
pected to have small IPR, of order N ' for N
sites, while localized states show larger IPR val-
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FIG. l. One dimension: The inverse participation ratio (IPB} for a linear chain of length 500 at p = 0.50. The

horizontal axis is simply the eigenvalue label & in a sequence ~
&

& ~2 « ~q « ~~. There is no mobility
edge and all states, except ~ = 0, are localized in an infinite system.
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FIG. 2. Three dimensions: IPH for an 8&&8&& 8 array at P = 0.25. The arrow indicates the mobility edge at & = 0.

ues.
We have performed the diagonalization in one,

two, and three dimensions with lattice sizes up
to 500, 25& 25, and 8& 8& 8, respectively, em-
ploying periodic-boundary conditions. We use
the iterative QR algorithm to guara. ntee numeri-
cal stability, knowing that the eigenvalues are not
degenerate because of the randomness. For a
given p sue need not average over many U's since
the localization/delocalization structure should
occur with probability one.

To display the results, we arrange the eigen-
values in an ascending sequence +, &w, & ~ ~ ~ &co~
& ~ ~ ~ &w„, and plot the IPR against the label k.
The eigenvalue &o =0 occurs at k =pN, and is al-
ways present since it corresponds to the uniform
mode x,. = const. Clearly this eigenvector is ex-
tended; in fact, it minimizes the IPR of x.

In one dimension, we expect, 4 on the basis of
the exponential growth phenomenon, a pure point
spectrum with well-localized eigenvectors. This

is indeed what we find (Fig. 1), except for a small
dip in the IPR around ~ =0 which we interpret as
a finite-size effect. Because all states are local-
ized, there are no spin waves in one dimension.

In three dimensions, the results depend on
whether p and q are above or below the percola-
tion threshold' "p, ~0.307. At p=q=-,', we find
mainly delocalized states, but localized states
appear for (u) 0 at p &p, (Fig. 2), and for co &0 at
q &p, . This is to be expected, since in an infinite
system the delocalized eigenstates are associated
with an infinite cluster" either of positive or of
negative masses, corresponding to positive or
negative eigenvalues, respectively. Whenever

p &p, (as in Fig. 2) or q &p„so that there is only
one infinite cluster and one species gets delocal-
ized while the other has to remain localized, we
find a mobility edge at ~ =0 for the disordered
crystal. This is not observable as such in the
random magnet, however, because the positive
and negative eigenvalues are combined so as to
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FIQ. 3. Two dimensions: IPR for a 25&&25 array at P = 0.30. The arrow indicates the mobility edge at ~ = 0.
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form the positive
~

&u~ excitation spectrum. Now
both localized and extended states occur in the
same energy range. We thus find spin waves for
any p in three dimensions, with localized states
densely superimposed in the same energy range
for p &p, or q &p, .

It may be well to point out that, whatever the
dimension, a single negative mass in an infinite
sea of positive masses always gives rise to a
bound state of negative energy.

In tuo dimensions, our results are similar to,
t;hough somewhat less clear-cut than those in
three dimensions. A mobility edge appears at
&u = 0 for p &p, &q (Fig. 3) or q &p, &p. Now, how-
ever, there is a regime where p a,nd q are both
less than p, ~0.59, giving localization of both pos-
itive and negative eigenstates. For example, if
p =q = —„we find fairly high IPR values over the
whole frequency range, except for ~ =Q, as in
Fig. 1. Thus in two dimensions we have spin
waves superimposed on localized states when p
&1-p, or p&p„but only localized states for
1 —p, &p &p, . This may explain the difficulties
experienced by Ching and Huber' in analyzing
their data.

Of course, we have to keep in mind that the
states in the delocalized domain could be "very
weakly localized. ""After all, a numerical ex-
periment is not a mathematical proof. Moreover,
the mere existence of a mobility edge contradicts,
at first sight, some recent results"" for the two-
dimensional Anderson model. But one has to
realize that the distribution of the masses is dis-
crete, whereas the energy distribution for the
Anderson model is taken to be continuous (Gaus-
sian"). Full details, including the density of
states, will be presented elsewhere.
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