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We report the first determination of critical exponents for a chemisorbed overlayer,
using low-energy electron diffraction. We examine the order-disorder transition of p(2
X 2) oxygen on the (111) surface of nickel. This study is the first of critical behavior of a
two-dimensional system in the four-state Potts universality class. From measured dif-
fraction-beam profiles, we extract the exponents 3, ¥, and v. Discussion of disparity
between our results and predicted exponents considers several possibilities, including

logarithmic corrections.

PACS numbers:

Increased understanding of two-dimensional
(2D) critical phenomena has shown that second-
order transitions fall into a small number of uni-
versality classes characterized by common criti-
cal exponents.' Since this classification depends
only on the spatial dimension and the symmetry
of the ordered state, it can be determined from
Landau-Ginzburg Hamiltonians.®® Thus the tran-
sitions of layers of adsorbed atoms on crystalline
surfaces are intimately related to well-studied
models.

Measurements of critical exponents, with use
of calorimetry and neutron and x-ray scattering,
have been reported for various physisorbed atoms
on graphite or Grafoil.* This substrate provides
the enormous surface-to-volume ratio required
by the lack of surface sensitivity in these probes.
The observed transition is almost always the dis-
ordering of a (V3XV3)R30° overlayer, which is in
the three-state Potts universality class.® This
uniformity stems from the van der Waals origin
of the lateral interactions. In chemisorption,
lateral interactions are indirect and more com-
plicated? providing a richer variety of over-
layers.” Since well-defined patterns and transi-
tions require single-crystal substrates, one needs
a strongly interacting probe such as electrons.
The concomitant multiple scattering, which
plagued intensity-voltage (/-V) analysis, was
widely thought to make low-energy electron dif-
fraction (LEED) unsuitable for investigating criti-
cality. However, when the incident electron
beam impinges near normal incidence (and be-
low ~50 eV), multiple scattering within the ad-
sorbed layer (which would confound extraction of
exponents) is sharply reduced,® since electron
scattering is minimal at right angles.® ! More-
over, the limited spatial resolution of LEED,"
which was held also to preclude such analysis, is
comparable to that of thermal neutrons.!'?
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We demonstrate our procedure using the classic
order-disorder transition of p(2X2) oxygen on
Ni(111)."®* The transition of this frequently oc-
curring'* overlayer symmetry corresponds to
the four-state Potts model.® This experiment is
the first to examine a system in this universality
class. The g-state Potts model is unusually in-
triguing at ¢ =4, since for ¢ >4 the transition be-
comes first order'®; the essential singularity
at g =4 (Ref. 16) leads to logarithmic correc-
tions,'” heightening interest but impeding analysis.

To find the critical exponents g (T < T, ~ 427 K)
and v and y (T >T,) we examined the LEED beam
profiles as a function of temperature. The ex-
periments were conducted at base pressure <107}
Torr. The profiles were measured with a stan-
dard spherical-grid LEED optics, which was
also operated as a retarding analyzer to obtain
the Auger spectrum to determine the relative
oxygen coverage. An optical system outside the
vacuum projected a real image of the diffraction
beam onto a photon counter. One cut of the angu-
lar profile of the beam was obtained by varying
the incident energy to move the beam across the
aperture. The equivalent angle of acceptance
was 1°. Temperatures were measured by a
Chromel-Alumel thermocouple and stabilized to
+0.01 K (at 400 K) with use of a feedback circuit.

The Ni samples, nominally 99.995% pure, were
zone refined to reduce the mosaic spread to less
than the instrumental resolution and oriented to
the (111) direction to better than 20’. Oxygen is
known by LEED /-V analysis'® to dissociatively
chemisorb on Ni(111), in the threefold hollows.
Marcus, Demuth, and Jepsen do not identify
whether these sites are “fcc” (where the next
layer of Ni atoms would bond) or “hep” (above a
Ni in the second layer). Our extensive Monte
Carlo simulations'® demonstrate that only one
such site—we do not know which—is selected at
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fractional coverages 6<0.27, while for 6>0.27
both types of site apparently can be occupied
simultaneously. Since our measurements were
made at 0 =i, the array of binding sites has tri-
angular, not honeycomb, symmetry. The transi-
tion is reversible, and the oxygen does not de-
sorb from the surface.?® While above about 500
K the oxygen does dissolve into the bulk of the
crystal, below this point no T' dependence in work
function or Auger intensity is observed. Thus
the oxygen remains on the surface and in the
same type of binding site throughout the transi-
tion, realizing a 2D lattice gas.

Sixty LEED profiles were recorded between
323 and 450 K. The Debye-Waller factor was
determined from the low-T dependence of the
intensity at the beam center; its effects were re-
moved by simple division of each profile by the
appropriate (energy-dependent)’ factor. We also
subtracted the uniform background from thermal
diffuse scattering.

The lowest-T profile, ~100 K below T, served
as the instrument response function (IRF). Two
methods were used to deconvolute it from higher-
T beam profiles.'® In the Fourier-transform
method (FTM) we divided the transformed profile
by the transformed IRF. (All transforms are 2D.)
Alternatively, the measured beam was least-
squares fit?! to the convolution of the measured
IRF and an assumed parametrized functional form
for the scattered intensity.?® Below T, the ideal
scattered intensity near the 3-order positions
combines a 6 function due to long-range order
and a short-range (critical scattering) contribu-
tion,* which is Lorentzian in (k-k,) as the re-
duced temperature ¢= (T-7_)/T, approaches 0;
k, is the center of the adlayer-induced spot. The
d-function contribution vanishes for = 0. In the
FTM the two contributions can be separated in
Fourier (“direct”) space since the long-range
part gives a constant, identifiable at the profile
wings. In the fit method the scattering intensity
is parametrized

1K) =T(K) {A%6(k - K,) +[ B2/(& - K,)% +w?]}, (1)

where T@) is the IRF and ° denotes 2D convolu-
tion. For each profile A, B and w are determined
as functions of temperature. Then letting G(T)
=A%*(T), B ¥(T), or w(T'), we determined the ex-
ponents =28 (for £<0), v, or v, respectively,

by three-parameter nonlinear least-squares fit-
ting®' to the functional form

G(T)=C,)|T-T,| (2)
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Alternatively, T, could be set and only C, and A
fit. The choice of the data range in the fit is im-
portant and difficult. The forms (2) hold only
asymptotically (I¢1=0), but rounding from finite-
size effects and incomplete deconvolution re-
quires |£1=0.015. To obtain good statistics for
the fits we used 0.015 < [#]1<0.06. This data
range gives a systematic error <5% in a determi-
nation of v from the Ising transition.'® The fits
for v and y (cf. Fig. 1) gave T, ’s of 153.7 and
153.9°C, respectively.

This agreement supports our choice of data
range. Less data were available below T_,. The
analysis for g gave a T, 2 K greater than the
other two values. When we reanalyzed using T
pinned at 154 °C, B changed from 0.16 to 0.14,
which we believe is more reliable. Thus the
largest source of error in B is determination of
T,.. The result is consistent with analysis for
with use of the FTM. In neither method could we
determine y’ and v’ (for ¢ <0) confidently, as the
profiles were rather noisy after subtraction of
the long-range contribution. For 7>T, the fit
method was far superior because of persistent
truncation oscillations in the FTM.*®

Table I lists our results. The quoted errors
combine the statistical errors suggested by the
x* of the fits and the sensitivity to T,. They do
not include any adjustment for systematic errors
due to our choice of data range.?* The disagree-
ment between our exponents and accepted values®
for the four-state Potts model are greater than
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FIG. 1. Nonlinear three-parameter least-squares fit
(solid line) with use of Eq. (3) of the measured inverse
critical intensity (circles) vs T'. The resulting expo-
nent Y is the most discordant with the four-state Potts
and “effective Potts” values. The inset illustrates the
ordered phase. Circles are adsorption sites; crosses
are oxygen adatoms.
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TABLE I. Experimental critical exponents, tneir values in the Ising
and four-state Potts universality classes, and effective Potts exponents

due to logarithmic corrections.

Measurable Expt. Ising Pure Potts Effective Potts
Magnetization 0.14+0.02 1/8 1/12 0.122
Susceptibility 1.9+0.2 /4 /6 1.37
Correl. length 0.94+0.10 2/3 0.80

the error bars of the measurement. We offer
three possible explanations:

(1) The crossover to four-state Potts exponents
as |£|—= 0 is not well understood and is not treat-
able within the existing Landau-Ginzburg scheme.
Perhaps the Potts values become apparent only
for |21<0.015. We are considering this question
by Monte Carlo simulation.

(2) When any corrections to scaling are present,
analysis with use of Eq. (2) leads to effective ex-
ponents implicitly dependent on the data range.®
For the four-state Potts model, there are loga-
rithmic corrections,'” which are themselves
singular as t - 0:

A=M~(=t) [ 1—ugln(-1)]*2,
Wt~ (1) 1w, @), )
B2—y~(t)""/?[1 —-uy In(2)F*’4,

and the amplitudes ug, u,, and #, are nonuniver-
sal. We did not include these corrections in the
exponent analysis since another parameter would
seriously reduce the significance of the fit. If
the amplitudes are not zero, each correction has
an obvious asymptotic form, e.g., M ~(—t)}/12
X[ = 1In(=#)]"1/#. The listed “effective Potts” ex-
ponents were determined by adjusting the expo-
nent of the simple uncorrected form [here (- t)B]
to least-squares fit the asymptotic form over the
¢t range used in the data analysis.?” This pro-
cedure gives the most extreme effect of loga-
rithmic corrections; thus, the entries in columns
3 and 4 of the table should bracket the experi-
mental exponents of column 1. Although they do
not, the effective exponents are closer to the ex-
perimental ones than are the “pure” exponents.
(3) The apparent agreement between our meas-
ured values and the Ising critical exponents is
tantalizing. Kleban?® showed that steps on the Ni
surface, along a principal direction, lift the
degeneracy of the sublattices in which the ordered
state can form. Such a mechanism can lower the
symmetry of this overlayer to P2mm. The p(2

X 2) overlayer becomes a (2X1) structure in the
new symmetry,?® which lies in the Ising univer-
sality class.? The crossover behavior is difficult
to characterize theoretically.

Random surface defects (impurities or steps)
produce somewhat different effects. Consequent
random interactions in the lattice gas Hamiltonian
“round” the transition for positive specific-heat
exponent @.*° Random “fields” are more potent®';
Local “moments” produce independent behavior
in surrounding regions, with concomitant finite-
size effects.®® The regions’ inverse size deter-
mines the degree of rounding. Both effects can
cause observed exponents to deviate nonuniver-
sally from pure values. Experiments with con-
trolled randomness might elucidate this behavior.
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