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A powerful, new extension of the Monte Carlo renormalization-group (MCRG) method
is used to accurately determine the tricritical point and exponents in two very different
two-dimensional models: an Ising antiferromagnet and a Blume-Capel model. We find
four relevant tricritical eigenvalues which are essentially identical for both models. We
also demonstrate that subtle warning signals appear in a standard Monte Carlo calcula-
tion when a second-order transition is being misinterpreted as first order.
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The properties of many- systems exhibiting sim-
ple critical points are now well known; however,
models which have multicritical points are gen-
erally less well understood. The usual Monte
Carlo renormalization-group (MCRG) technique’
provides excellent critical exponent estimates
but with an accuracy which is ultimately limited
by the uncertainty in the critical temperature.

Numerical methods generally have extreme
difficulty in finding the precise location of a
multicritical point in a multidimensional space
of coupling constants. To solve this problem,
we have used an extension of the usual MCRG
technique to calculate accurate values for tri-
critical couplings direct from a simulation of a
system in the neighborhood of the tricritical
point. This provides a determination of the tri-
critical point that is independent of the criteria
for convergence of the eigenvalue exponents.?

Although the nature of tricritical behavior is
now quite well known for models in three spatial
dimensions,® the corresponding information for
two-dimensional models*-* is scarce and some-
times contradictory. Our interest in two-dimen-
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sional tricritical behavior has been further height-
ened by recent developments in the study of criti-
cal behavior in two dimensions. Baxter has
shown!* that the critical exponent 6 is 14 in a

hard hexagon model. This discovery shows that
the concept of “weak” universality'® is not valid

in two dimensions. Moreover, since there is
reason to believe that this model should be in the
same universality class as the three-state Potts
model in two dimensions,'® the apparent differ-
ence in the exponent 0 raises significant ques-
tions. Extensive previous work'?!%:17"2! hag pre-
sented a picture in which percolation, critical be-
havior, and tricritical behavior in a wide range of
models may be viewed as different aspects of the
properties of a generalized Potts model. Conjec-
tures by den Nijs,'® by Nienhuis, Berker, Riedel,
and Schick,? and by Pearson'® give explicit predic-
tions for the continuous variation of important
exponents with g for the g-state Potts model.
These describe tricritical behavior as just an
extension of the critical-exponent curve. The
predicted deviations from ‘“‘weak” universality
are small along the critical portion of the fixed
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line, but our study of tricritical behavior allows coupling constants are given by

us to calculate the magnetic eigenvalue where the 3(s, (M)

deviation from “weak” universality is great.2 -—5K°;T = (S (MS ) - (S,(M)(55@). (5)

We have studied two different two-dimensional
models on a square lattice: The spin-3 Ising
antiferromagnet with Hamiltonian

H=d2,0,0,=3J0,0,0,+H), 0, (1)

nn nnn i

where 0;=%1 and J>0; and the spin-1 Blume-
Capel ferromagnet
}=-J) 0,0,-d'2,0,0;+A),0,%, (2)
nn nnn i
where J>0, and 0;=0, 1. It is useful to write
the generalized Hamiltonian in the form

H=) K,\S,, (3)

where the S, are sums of products of spin opera-
tors, and the K, are the appropriate coupling
constants with factors of —1/k2T absorbed.

We began by following Wilson’s procedure® of
doing Monte Carlo (MC) simulations on two dif-
ferent-size lattices. If the lattices have linear
dimensions differing by the renormalization-
group (RG) scale factor, b, one RG iteration of
the larger system will make the two lattices
equal in size. The differences in the correlation
functions will then reflect the difference between
the original and the renormalized Hamiltonians,

To determine the change in coupling constants
produced by the RG transformation, we multiply
the vector of correlation-function differences by
the inverse of the matrix

8(S,™)

K (S5 MS5M) = (S,MNS ). (4)

This allows us to track the trajectory toward (or
away from) the fixed point. An approximation to
the fixed point can then be obtained from these
changes in the coupling constants and the eigen-
vectors and eigenvalues of the usual MCRG analy-
sis. By projecting back onto the space of m
coupling constants included in the MC simula-
tion, the deviations from the fixed point corre-
sponding to the m largest eigenvalues can be
eliminated. In particular, we can determine the
(two) coupling constants needed to locate the tri-
critical point.

For direct determination of the tricritical pa-
rameters, we used a technique suggested by
Wilson, The derivatives of correlation functions
after n RG iterations with respect to the original
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We can determine how the original coupling con-
stants should be changed to make the correlation
functions equal by solving the equation

(So(™)y = (S,

-5 [a(Sa('(’;?L _
B L 9%Kg

8(S, " V)¢
0K 5

]GKﬁ(w’ (6)

where (S,™), and (S,(" V), are the correlation
functions for the “large” and “small” lattices,
respectively. As the number of RG iterations, #,
increases, this procedure becomes increasingly
sensitive to relevant perturbations (and insensi-
tive to irrelevant perturbations), and provides
an accurate, systematically improvable estimate
for the critical or tricritical parameters.

The two models were examined with use of quite
different RG transformations. The Ising antifer-
romagnet (0=+1) was studied with use of a b=+5
transformation®2% in which the block spins were
made up of a central spin and its four next-near-
est neighbors. The odd-symmetry couplings for
this model are ‘“staggered” couplings which alter-
nate in sign between sublattices. The Blume-
Capel model (0=0, +1) was studied with use of a
b=2 block-spin transformation with a “plurality
rule.” Ties were decided with use of a random-
number generator.

Using the extended MCRG technique outlined
above, we were able to accurately locate the tri-
critical coupling of the Ising antiferromagnet K,
=H,/kT,=3.283+0,01 and K,=-J/kT,=~0.828
¥0.006. A total of four relevant eigenvalues
were found, and Table I shows the variation with
iteration for three different lattice sizes. For
the Blume-Capel model (which is identical to the
generalized Potts model considered in Refs.
10-13), we carried the procedure one step fur-
ther and first applied the method with a single
RG iteration starting with a nearest-neighbor
model (i.e., J’=0) to also find the deviation from
the fixed point in the direction of the largest
irrelevant eigenvector. This allowed us to move
along a line of tricritical points towards the
fixed point, and improve convergence. We esti-
mate the optimal next-nearest—neighbor coupling
to be K, =J'/kT,=0.2804. With K, held fixed at
this value, we found the tricritical point to be
located at K, =J/kT,=1.246+0.005, and K, =-4,/
kRT,=-2.99+%0,01; the corresponding eigenvalue
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TABLE 1. Eigenvalue variation with iteration. Entries represent average values obtained from
the analyses that use the two or three largest numbers of couplings. The number of MC steps per

spin is also indicated for each lattice size.

Antiferromagnet
L = 4/5 L =20 L = 20/5
Tteration e e (o] o e e (o] (e} e e (o] o
- yl y2 Yl y2 Yl y2 Yl y2 yl Y2 yl y2
1 1.766 0.785 1.933 1.100 1.763 0.730 1.930 1.064 1.766 0.738 1.930 1.059
2 1.789 0.863 1.935 1.165 1.784 0.844 1,933 1.127

9 x 104MCS/S

9 x 10['Mcs/s

fun

.789

o

.838 1.931 1.119

5 x 104MCS/S

Blume-Capel

L=28 L =16 L = 32
1 1.783 0.713 1.933 1.112 1.785 0.736 1.934 1.120 1.785 0.715 1.934 1.120
2 1.796 0.777 1.933 1.125 1.799 0.795 1.934 1.137
3 1.805 0.835 1.929 1.136

1.2 x 1O6MCS/S

4,58 x IOSMCS/s

2,24 x IOSMCS/S

flows are shown in Table I. For both models,

the line of transitions could be determined more
accurately than could the location of the tricriti-
cal point on this line. The quoted errors in the
coupling constants are correlated, and thus can-
not simultaneously assume their extremum values
except in a direction approximately tangent to the
phase boundary. An examination of Table I shows
that for each model the eigenvalue variation with
iteration is essentially the same for all three
lattice sizes. Clearly, then, our results show
no finite-size effects. In addition, the eigenvalue
estimates are virtually identical for the two
models: ¥,°=1.80+0.02, y,°=0.84+0.05; y,°
=1.93+0.01, and y,°=1.13%0.02, The dominant
source of error, at least for the estimates of the
largest even and odd eigenvalues, is the small
remaining uncertainty in the location of the tri-
critical points; statistical errors and finite-size
effects are practically negligible. We again em-
phasize that the tricritical-point locations have
been determined independent of the convergence
in Table I. Our results quite accurately confirm
both the predictionsg!? 13:18:1° for the tricritical
values of y,=1.80 and y, =1.925. Our eigenvalue
estimates, together with the usual scaling rela-
tions, lead to the following tricritical exponents:
v,=0.56, «,=0.89, 6,=27.6, n,=0.14, ,=1.03,
B,=0.039, and the crossover exponent ¢,=0,47,

One surprising feature of these values is that
several of them are quite close to the mean-field
values which are exact in three dimensions. (The
rapid convergence for y,° and y,° reflects the
absence of logarithmic correction terms.)

The noticeable difference between our present
estimate of T, for the nnn antiferromagnet and
that obtained from a standard Monte Carlo meth-
od was somewhat disturbing. To understand the
source of this difficulty, we carried out addition-
al Monte Carlo calculations just above the tri-
critical points in both models. Apparent hystere-
sis was observed, but it became narrower as the
lattice size decreased. The time dependence of
the properties showed large fluctuations and
regions which could be interpreted as showing
metastability. A very striking phenomenon is
evident in the histogram for L~%7, 0.2 for the
Blume-Capel model which is shown in Fig. 1.
Even though the system is just above T,, the
double-peak structure would suggest a first-order
transition! The only warning signal that such an
identification may be spurious is a small size
dependence. The peaks should continue to move
together as the lattice size increases until they
join to form a single peak. We again emphasize
that the difficulties in locating multicritical points
which appear in other numerical techniques, such
as series expansions?® or standard Monte Carlo
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FIG. 1. Histogram for the distribution of L ™22 ;0; ?

during a standard Monte Carlo calculation on the Blume-

Capel model with J =1.241, J’=0.2804, and A=—2,98.
Open circles are for L = 32; closed circles are for
L =16.

methods, can be avoided with use of the extended
MCRG method.
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