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strains to occur for As-doped Si, even at high
doping levels. Therefore, we conclude that the
large effects observed for As-doped samples
are due to the presence of the d electrons in As.
The As impurities will introduce either true
localized levels or resonance states lying well
below the top of the valence band (I'».) at the
Brillouin-zone center. Orthogonality and screen-
ing effects due to the d electrons may influence
the energy levels of higher-lying states (in both
the valence and conduction bands) but it will prob-
ably not alter greatly the joint density of states.
It is much more likely that the presence of the d
orbitals produces a rapid increase in many ma-
trix elements of the dipole operator which vanish
in the perfect crystal; the inclusion of d orbitals
in the basis set introduces the possibility that
strong p-d transitions can occur on the same
atom where &p ~r

~
d) is expected to be large. Thus,

although the coefficient of the d orbitals may be
rather small, the strength of the matrix elements
and the fact that there are ten d electrons will
lead to a rapid increase in cy as the concentration
of As increases. In B- and P-doped Si the en-
hancement of a will not be nearly so great be-
cause the outer s and p orbitals of B and P do not
differ significantly from their counterparts in
the host Si lattice.
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A novel dynamic Monte Carlo renormalization-group method is devised. Application to
the kinetic Ising model in one dimension yields a value of z, the dynamic critical exponent,
which is in excellent agreement with the exact result. In two dimensions we find z =2.22
+ 0.13 with the most probable value z =2.17.

PACS numbers: 75.10.Hk, 75.40.Dy, 05.50.+q

Recently the Monte Carlo and renormalization-
group methods have been combined to analyze a
number of problems in critical phenomena. ' In

this Letter we extend the procedure used in Refs.
3 and 4 to dynamic critical behavior and apply our
method to the computation of the dynamic expo-
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E(N, m, T)= (N' ') '(g S ' ' ~ S ' ')r „, (2)

where N is the number of spins in the original
lattice, N ) is the number of block spins S~

generated by ~ blockings. Only nearest-neighbor
block spins are used in the above average. T is
the temperature of the original spin system. We
used these quantities to determine if two renor-
malized Hamiltonians are the same, that is, we
search for two temperatures T, and T, such that

E (N, m, T2) =E (Nb, m + 1,T~),

nent, z, for the one- and two-dimensional kinetic
Ising model.

We first review the static method. A more de-
tailed discussion is given in Ref. 4. We describe
the method for the Ising model, although it can
be easily generalized to other models. The re-
duced Hamiltonian is defined as

Ã(T) =T 'g S; S, ; S, =+ 1,
{ij)

where (ij) are nearest-neighbor sites on a d-di-
mensional hypercubic lattice, and T is the dimen-
sionless temperature.

The first ingredient of the method is a sequence
of spin configurations generated on a large finite
lattice with periodic boundary condition by the
traditional Monte Carlo procedure of Metropolis. '
Block-spin configurations are constructed from
the spin configurations by means of the majority
rule. ' Ties are broken by randomly assigning the
block spins the value+ 1. Configurations with
larger-sized block spins are constructed from
those with smaller-sized block spins. If 5 is the
size of the first block spin in units of the original
lattice spacing then all lengths in the block-spin
system in units of the block-spin lattice spacing
have been reduced by a factor b. This leads to a
reduction in the correlation length, $, of the in-
finite system by a factor b. The goal of our pro-
cedure is to find two temperatures, T, and T„
such that $(T,) =b)(T,). To do this we wish to
find a renormalized Hamiltonian derived from
3C(T,) after m iterations of the renormalization
group which equals that derived from X(T,) after
~ +1 iterations. If two Hamiltonians are equal
then any thermodynamic average based on those
Hamiltonia, ns are equal and also further itera-
tions of the renormalization group mill continue
to give equa, l Hamiltonians.

To be more concrete we compute the following
thermodynamic averages from our Monte Carlo-
generated spin and block-spin configurations:

$ (T~)/$ (T2) = b = [(T,—T,)/(T, —T~)]". (4)

In a rough calculation at T „about 1% above T„
we found v = 1.07 + 0.15 for the two-dimensional
(2D) Ising model. In this calculation, as well as
the dynamic calculations, we used about one mil-
lion passes on a 256-spin lattice to generate aver-
ages, which we matched to those generated from
four million passes on a 64-spin lattice. A pass
consists of V attempted spin flips where the spins
are chosen randomly. At T„spins are flipped
on approximately 20/0 of the attempts. We found

matching for ~ = 1 and ~ = 2 but not for ~ = 0,
with 5 = 2. Since matching occurs for small val-
ues of ~, the effect of irrelevant interactions
dies out very quickly.

We also tested the procedure on the one-dimen-
sional Ising chain with b = 3 where, for low tem-
peratures, exact results' give

1/T, —1/T, = —,lnb.

Our results agree with this equation to within a
couple percent. We found matching at ~ =0, 1,
and 2 of an 81-spin chain onto a 27-spin chain.
In this calculation and the dynamic calculations
described belom we used 0.4 million passes for
the 81-spin chain and 0.2 million passes for the
27-spin chain.

The Monte Carlo procedure is a kinetic proc-
ess by its very construction. ' In the Metropolis
sampling procedure the transition probability
which determines the dynamics is given by
min(exp(- MC), 1J, where 53C is the change in the
reduced energy induced by flipping the ~th spin.
We expect this dynamics to be in the same uni-
versality class as the Glauber' model and our re-
sults bear this out. According to the dynamic
scaling hypothesis, "if the length scales by a fa.c-

for ~ greater than some value. d is the dimen-
sionality of the lattice. It is necessary to use a
larger spin lattice for the larger block spins
since we must compare block-spin averages from
lattices with the same number of block spins.
The above equality mill only begin to occur for ~
sufficiently large that the effects of irrelevant in-
teractions is small. It is essential that the ma. tch-
ing occurs for more than one value of ~ to en-
sure that the renormalized Hamiltonians derived
from T, are tracking those derived from T, and
are thus equal. If matching occurs when Ty =T„
then $(T,) = b$ (T,) and T, must be the critical
temperature T,.

In addition the exponent v can be computed from
the equation
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tor of b, then time scales by a factor b', where z
is the dynamic critical exponent which we wish to
compute. The dynamic procedure is similar to
that in the static case except that we now compute
time-dependent quantities. We chose for reasons
of computational simplicity the following:

E(N&yn, T;t)
(N(m))- &(g S (ni)(t), g (m){p))

C(N, m, T; t)

(N(m))- l(g S (rn) (f), g ( m) (P))

where the unit of time is one pass through the lat-
tice. The meaning of time in Monte Carlo simu-
lations is reviewed in Ref. 8. From dynamic
scaling we expect that after ~ blockings the time
t goes to tb . This means that to match time-de-
pendent quantities we must, in addition to finding
the temperatures where the static quantities
match, find the times such that the time-depen-

dent averages match. In other words we search
for the two times t and t' such that

E(N, yn, T2, f) =E(Nb, m + 1,T~, t'). (8)

We can then determine z since t'/t =b'. We carry
out a similar procedure for the spin autocorrela-
tion function C(t) defined by Eq. (7).

This method was tested on the 1D Ising chain
where exact results" give

z = —1n[—,'(1 —y')]/1n2, y =tanh(2/T). (9)

We found agreement with this result to within 2%
statistical uncertainty for T, = 1.0 on an 81-spin
chain and T, = 0.645 on a 27-spin chain. Unlike
other position-space techniques, the Monte Carlo
renormalization-group method treats lattices of
all dimensions on the same footing. Since we
have obtained excellent agreement in one dimen-
sion with the exact value, we expect to obtain
reliable results in higher dimensions.

We now discuss our results for the 2D kinetic
Ising model. The raw data and the estimates for
z based on each quantity are shown in Table I. To

TABLE I. Dynamic Monte Carlo renormalization-group raw data for the two-
dimensional kinetic Ising model at temperature T = g. The quantities E and
C are defined in the text. N is number of spins on the lattice, m is the number
of blockings, and t is the time. z is the resultant values for the dynamic ex-
ponent. z' is the most likely value after subtracting out the slight mismatch for
the static quantities E'(N, ~,T, , t = 0).

N = 256 2m N=64

c (t)

E(t)

1
2
4
8

1.4529+0.0011
1.4585+0. 0037
1.6059+0.0046
1.7547+0. 0042

40

0.5253+0.0022
0.6656+0.0027
0.7678+0.0030
0.8474+0. 0026

t=40

1.49088+0.00058
1.60393+0.00118
1.75131+0.00140

10

0.62102+0.00062
0.76257+0. 00079
0.84120+0.00101

10

2.24+. 16
2.27+. 14

2.15
2.17

c (t)

E(t)

2.100 + 0.008
2.659 + 0.010
3.060 + 0.012
3.360 + 0.011

80

0.5005~.0.0030
0.6389+0.0035
0.7375+0.0038
0.8147+0.0035

t=80

2. 4779 + 0.0024
3.0402 + 0. '3030
3.3457 + 0.0043

20

0.58838+0.00088
0.72894+0.00110
0.80523+0.00139

20

2.25+. 17 2.23
2. 18+ .16 2.14

'2. 20+. 10 2.15
2.21+.09 2. 13

2.001 + 0.012
2. 554 + 0.014
2.946 + 0.016
3.251 + 0.015

2.3527 + 0.0035
2.9138 + 0.0045 2.20+. 11
3.2184 + 0.0054 2. 20+. 10

average = 2.22+. 13

2.19
2. 18
2. 17
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avoid the necessity of matching static quantities
at different temperatures, we used T y

= T 2
= T,.

Because the static quantities match within the sta-
tistical error estimates, our procedure gives a
T, in agreement with exact results. For the time-
dependent quantities we used times which differ
by a factor of 4. If there were perfect matching
of the time-dependent quantities then z = 2. There
is not perfect matching. Using the 64-spin lattice
quantities at t = 10 and t = 20 we can determine
how C and E change with time. From this data we
can determine for what value of times we would
achieve perfect matching. This leads to the first
column of z values, which have an average value
of z =2.22 with an average 1-standard-deviation
uncertainty of 0.13.

We can make a somewhat more informed esti-
mate of z by noting that, if one average in a
Monte Carlo simulation fluctuates in one direc-
tion, so do all the others. Thus, since our static
quantities do not match by some fraction of a
standard deviation, the dynamic quantities will
also be off by that amount. We can subtract away
this part of the error by estimating how much we
must change E(N, m, T„t=0), the static quanti-
ties, to achieve perfect matching and then make
the same percentage change in the time-depen-
dent quantities. This procedure leads to the sec-
ond column of z estimates in Table I, whose aver-
age is z =2.17.

The fact that we have reached the scaling re-
gion, i.e. , the irrelevant parameters have died
out, is confirmed by three facts about the data in
Table I, namely that the same values of z within
statistical errors are found for (1) two different
time-dependent quantities, C and E; (2) two dif-
ierent length scales; and (3) two different time
scales. The method can be systematically im-
proved with use of more Monte Carlo passes and/
or larger lattices so that more iterations can be
performed before matching. It is encouraging,
however, that good results are obtained on rela-
tively small lattices.

Results for the dynamic exponent z from other
methods vary from z = 1.4 to 2.7.'" In these
methods the error bars are frequently unknown
and systematic improvement is difficult. Our re-
sults are closest to those of Achiam, who ob-
tained z = 2.16 with use of a real-space renormal-
ization-group method to second order in a cumu-
lant expansion, on a triangular lattice. It is also
comparable with the estimate z =2.13 by Racz

and Collins based on the high-temperature series
expansion of Yahata and Suzuki.

In conclusion, we have developed a novel dy-
namic Monte Carlo renormalization-group meth-
od and applied it successfully to the one- and two-
dimensional kinetic Ising model. Our method can
be easily extended to any other statistical-mech-
anical model and offers one of the most reliable
means for obtaining information about the dynam-
ic scaling properties of these models. The only
limitations are those of access to sufficient com-
puter time. Our procedure can also be used in
molecular-dynamics simulations.
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