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wave modulation model—which corresponds to
n, ~ 0—is thus here a good approximation for a
large part of the I phase.
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A dilute n» — 0 vector model provides a useful description of equilibrium polymeriza-
tion in a solvent. Such polymerization occurs in liquid sulfur solutions and leads to a
lower critical solution point that is analogous to the tricritical point found in *He-‘He
mixtures. In the mean-field approximation, the model is identical to an earlier theory
of Scott. Nonclassical critical behavior can explain certain discrepancies between Scott’s

theory and experiment.

PACS numbers: 64.70.Ja, 64.60.Kw, 82.35.+t

Recently we have shown''? that equilibrium poly-
merization can be described by the n -0 limit of
the n-vector model of magnetism in a small mag-
netic field, and that evidence for the nonclassical
critical behavior of the n — 0 vector model can be
seen in the polymerization of liquid sulfur. In the
molecular-field approximation, the » -0 vector
model becomes identical® with the Tobolsky-Ei~
senberg® theory of equilibrium polymerization.

Solutions of liquid sulfur with a variety of or-
ganic solvents are unusual®*™® in that they exhibit
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a temperature range of complete miscibility of

the components, bounded below by the familiar
upper critical solution temperature (UCST), T,,
and low-temperature phase separation, and bound-
ed above by a lower critical solution temperature
(LCsT), T,, above which the components again
undergo phase separation. Scott* has presented a
theory of these solutions based on the Flory-Hug-
gins’ theory of polymers and the Tobolsky-Eisen-
berg® theory of polymerization, and has shown
that it is capable of reproducing many of the quali-
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tative features found® in these solutions.

In this Letter we introduce a dilute n-vector
model that, in the » -0 limit, provides a useful
model of equilibrium polymerization in a solvent
and, in particular, of the polymerization and
phase equilibria of liquid sulfur solutions with
various organic solvents.*® In the molecular-
field approximation this model becomes identical
with Scott’s theory. Through the correspondence
with the dilute » — 0 vector model, the UCST in
sulfur solutions is seen to be an ordinary critical
point governed by Ising exponents whereas the [

LCST is found to be intimately related to the #7i-
critical points found in models of dilute ferromag-
nets and *He-*He solutions. The phase diagrams
for sulfur solutions in an appropriate variable
space are intimately related to those of the Blume-
Emery-Griffiths® (BEG) model of *He-*He mix-
tures. In this Letter we define our model and out-
line some of the results. The details of the cal-
culations and the resulting phase diagrams will
be presented elsewhere.’

Consider first the dilute n-vector model with
Hamiltonian

X==K 2 vy, —ATV —JZ)VVS S—mod)_,z/,S(l) 1)

(i, j) (i, 5)

where the sum ) ; extends over all sites and Z<, ;» extends over all distinct nearest-neighbor palrs of
lattice sites, where v, is a spin-% variable (v; =0,1) with v, =1 corresponding to a magnetic spin S oc-
cuping site Z and v; -0 corresponding to a nonmagnetlc impurity, and where 8§ is a classical n- compo-
nent vector “spin” of length Vi and S'V is its component parallel to the field H. In the limit # ~0 the
partition function of this model can be written in the form?°

Z=eV =Tre "/ = {Z)}eXp(K 2 ViV +R v 25 D DN AN ()T (N, Ny, N, N3 v ), @)

i Np No Ny

where K =K/kT, A =a/kT, J=J/kT, and h =mH/
kT, with T the temperature of the magnetic model,
where E{v is the sum over all assignments of

v; =0 or 1to each site, and where I'(N,, N,, N, N;
{w}) is the number of ways of placing N, self-
avoiding and mutually avoiding walks containing
exactly N, bonds on the lattice of N sites such

that there are exactly N, single-site, no-bond
walks and such that every site visited by any walk
has v; =1. Although the sum in (2) contains single-
site walks, it contains no closed loops.

Now consider the following model for equilibrium

polymerization in a solvent. Each site can be oc-
cupied by either a solvent molecule (denoted by
subscript 0), or by a S, (monomer) unit (denoted
by subscript s), which may be either a closed
ring or open as part of a polymer (possibly of
length 1). There are nearest-neighbor interac-
tion energies between solvent and monomer mole-
cules given by E,, E,, and E  for solvent-solvent
pairs, etc. In addition to the Boltzmann factors
arising from these interactions, the statistical
weight of any given linear polymer consisting of
m monomers [and therefore (n — 1) bonds] with a
specific embedding on the lattice is taken to be

K, if m =1, and 2K, (K,")" ! if m >1, where

K, =expl (TAS, - AH,)/kT],

3)
K, =exp[(TAS, - AH,)/kT].

The statistical weight of any closed-ring polymer
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containing more than one monomer is taken to be
identically zero. The detailed motivation for this
choice is presented in Ref. 9. Here we merely
note that AS,” and K, do not contain contributions
from the number of ways to arrange the polymer
on the lattice and are distinct from AS, and K, of
Scott’s theory. With the identifications

J=K,’, K=QE ;~Eq,~E)/kT,
$h*=K,, A =lp,- “o+q(EOs'Eoo)]/kT’

where U  and [, are chemical potentials of S,
(monomer) units and solvent, respectively, the
(“semigrand”) partition function appropriate to
this sulfur solution, Y, is given in terms of Z in
Eq. (2) by

Y =exp(3qNE ,,/kT)Z(K,

4)

J,h,A,N), (5)

where ¢ is the coordination number of the under-
lying lattice (¢ =6 for simple cubic).

For the polymer solution the volume fraction of
sulfur, ¢, the volume fraction of polymer, ¢,
the volume fraction of unpolymerized sulfur, ¢,,
and the average number of monomers per poly-
mer, P, are given in terms of the magnetic vari-
ables by

Qy=xg, Qu=Jde +Ehm,
_ , 2Je ©
Pr=@Qs=¥u, P= 1+;l_7}7
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where m =3f/dh, e =3f/3J, and x ;=8f/3A.,

The molecular-field approximation to our dilute
n -0 vector model can be obtained by following
the procedure used by Blume, Emery, and Grif-
fiths® to treat the corresponding » =1 case with
the appropriate change of definition of trace, and
treatment of the » -0 limit."* This calculation is
given in detail elsewhere.’ The results can be
summarized by the equations

f&,J,A,R) == %qkx 2 -~ 3qIm? —In(1 =x ),
(1-x)"t=1+[1+3(@Tm +n)?*]exp@ +qKx ), (7)
m =1 -x)(gTm +h) exp(d +gKkx ), e =%qm?.

Under an appropriate identification of variables
this result becomes identical with Scott’s theory*
of polymer solutions. The connection is given by
the equations (derived in Ref. 9)

~ w ~

K1=%h27 szqJ’ EIT:‘IK;

Iz, =—f, In%: =}, (®)
2

(p)\=é'xs{1i[1—2(m/xs)2]1/2}, (pp=xs_(p)\,

where K, is Scott’s propagation equilibrium con-
stant, w is his interaction parameter, a, and @,
are the activities of solvent and sulfur, respec-
tively, and where the plus sign is appropriate
when | 2] <V2(1 -gqJdx,).

The connection between the phase diagrams
found by Scott for sulfur solutions and those ap-
propriate to dilute magnetic models® is clarified
by examining the # =0 phase diagram of our -0
vector model in (J,K,A) space. Figure 1 shows
the projection of several important features in
this diagram into (¢J,¢K) plane. Curve c is the
line of critical points bounding the phase separa-
tion between spin-rich and solvent-rich nonmag-
netized phases, driven by the interaction K. It
occurs at gk =4, independently of qJ , and ends in
a critical end point at ¢J =1.502, Curve / is the
tricritical line along which the critical surface
for magnetic ordering (critical polymerization
surface), ¢Jx,=1, becomes a first-order transi-
tion surface. It is the locus of LCST’s, T,.
Curve e is the critical end-point line at which the
critical surface for magnetic ordering meets the
coexistence surface for the separation of nonmag-
netic phases. Curvese and ! meet at the tricriti-
cal end point (gK =4.513, ¢gJ =1.285). The dashed
line between this tricritical end point and the cri-
tical end point of curve ¢ is a line of three-phase
equilibrium between two nonmagnetized phases

FIG. 1. Phase diagram in field space for the dilute
n— 0 vector model in the molecular-field approxima-
tion. The figure shows the projection along the A axis
into the (gJ, qk) plane of the important features of the
h = 0 phase diagram. See text for details.

and the magnetically ordered phase.

The relationship between the phase diagrams of
Scott’s theory and those for dilute magnets can be
seen by comparing the light lines numbered 1-9
in Fig. 1. Lines 1—-4 are straight lines through
the origin corresponding to various choices of
K/J in the n —0 vector model. They give phase
diagrams similar (although not, of course, identi-
cal) to those in Figs. 5(b)-5(d) of Blume, Emery,
and Griffiths.® (Their model is equilvalent to a
dilute spin-% Ising model, and is identical with
our dilute n-vector model with » =1, The molecu-
lar-field approximation to our model with » =1 re-
produces the BEG theory exactly.) The curves ap-
propriate to sulfur solutions are obtained by set-
ting

qJ =K ,(T)/K,(T ,*), qK=4T,/T, 9)

where T,* =432 K is the polymerization tempera-
ture of pure sulfur and T, is the critical tempera-
ture of the low-T separation. Curves 5-8 are ap-
propriate to sulfur solutions and give phase dia-
grams identical to those in Figs. 6(a), 6(b), 7(b),
and 8(b), respectively, of Scott.*

An advantage of the phase diagram shown here
is that new types of phase diagrams are easily
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anticipated. For example, with other choices of
AH,/RT,* than that appropriate for sulfur, a new
type of phase diagram is possible, unlike any of
those found by Scott. This is illustrated by curve
9, which corresponds to AH,/kT ,*=1.0 and T,/T ,*
=1.55. [The shape of the corresponding phase
diagram in the (T',x) plane is left as an exercise
to the reader, and will be given in Ref. 9.]

The nonclassical critical behavior to be expect-
ed for this dilute » -0 vector model should help
to resolve certain discrepancies between the
mean-field predictions of Scott’s theory and the
experimental phase diagrams for sulfur solutions.
In the limit K, - 0 the mean-field theory coexis-
tence curve is “pointed” at T', with the composi-
tion difference between coexisting phases vanish-
ing linearly with T -T,, and the critical poly-
merization line passing smoothly into the unpoly-
merized branch of the coexistence curve in the
(T ,x) plane. In contrast, the experimental curves®
for sulfur solutions are rounded, apparently be-
coming horizontal at T',, and the polymerization
curve does not appear to be a simple extension of
the unpolymerized branch. While the nonzero
value of K, will produce some rounding of the co-
existence curve, the accepted values of K, are
too small to produce the observed rounding (K,
~1071% at T,, and the resulting shift of T, is about
1°K). _

Simple scaling equations of state'? are capable
of producing a break in slope between the critical
curve and the coexistence curve, and renormali-
zation-group studies'’ '* indicate logarithmic cor-
rections to mean-field theory that result in round-
ing of the coexistence curve to a shape that is
asymptotically flat at T',. These logarithmic cor-
rections are difficult to detect in *He-*He mix-
tures’ and vanish'® in the limit » — ©. Theoreti~
cal estimates' and Monte Carlo calculations'’
indicate that such corrections may be important
for n =1, however, and an estimate along the
lines of Ref. 14 indicates that they will be even
more important as » —0. The possibility that
logarithmic corrections to tricritical phenomena
might be observed by examining sulfur solutions
is an exciting prospect.

Another modification of Scott’s predictions oc-
curs at the critical end point on curve 8 in our
figure and in Fig. 8(b) of Scott.* According to
mean-field theory, the phase boundary of the sul
fur-rich phase undergoes a simple discontinuity
of slope at the polymerization line in the K; -0
limit. According to our model, the slope dx /4T
of this phase boundary should remain finite as
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the critical polymerization line is approached
from below, but should diverge as it is approached
from above (in the X, - 0 limit):

< Tx
dxs~{const, T=<T , (10)

dT (T =T*"%, T>T*

where a =0.24 according to recent estimates.'®
This prediction seems in somewhat better agree-
ment than mean-field theory with the phase dia-
gram observed for sulfur with fvans-decaline®®
and carbon tetrachloride.®
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