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Soliton Density in Structurally Incommensurate Systems
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The temperature variation of the phase soliton density has been determined in Rb2ZnCl4
and a nonclassical critical exponent 2 has been found. Electron. -paramagnetic-resonance
and nuclear-magnetic-resonance data demonstrate that in K2Se04, Rb2ZnC14, and Rb2ZnBr4
the soliton width is large as compared to the intersoliton spacing over most of the incom-
mensurate phase so that the continuum description is adequate.

PACS numbers: 63.20.oj, 64.60.Fr

Structurally incommensurate (I) systems are
characterized by the appearance of a mass-den-
sity wave (i.e. , a modulated lattice distortion)
with a, periodicity which is an irrational fraction
of the periodicity of the underlying lattice. In the
"plane-wave" modulation limit the incommensu-
rate distortion is characterized by a single Fou-
rier component of the displacement. A rt:fined
Landau theory' ' has shown that this solution is
not stable well below the paraelectric-incommen-
surate transition temperature T, and that the in-
commensurate phase actually consists of large
almost commensurate regions separated by nar-
row domain walls or "discommensurations"
where the phase of the order parameter changes
rapidly. The density n, of these domain walls or
phase solitons should ge according to the classi-
cal theory' ' continuously to zero, n, ~-ln '(T
-T,)/T„when the low-temperature commensu-
rate (C) phase is approached, T -T,'.

Henormalization-group calculations have, how-
ever, shown" that the influence of lattice dimen-
sionality d on the critical behavior of the I-C
transition is less pronounced than the influence
of the dimensionality of the incommensurate mod-
ulation, ~. For a d =2+& dimensional system
exhibiting a one-dimensionally modulated struc-
ture (m = 1), there is always a nonclassical criti-
cal region' for finite temperatures where the sol-
iton density vanishes as n, ~ (T —T,)"', which dif-
fers strongly from the classical result. ' ' This
discrepancy has not yet been checked experimen-
tally.

Another important unsolved question is whether
phase solitons are broad or narrow as compared
to the lattice spa. cing. For na.rrow solitons the
continuum approximation —used in most of the

above theoretical treatments —is not applicable
and the discreteness of the crystal lattice will
lead to soliton pinning at particular lattice sites.
The intersoliton distance will be an integral mul-
tiple of the lattice spacing leading to a series of
commensurate structures' (the devil's staircase).

Quantitative experimental information on phase
solitons in incommensurate systems in general—and structurally incommensurate systems in
particula, r—is rather scarce. Evidence for the
existence of phase solitons has been so far de-
rived from (i) the presence of higher harmonics
in the neutron-scattering diffraction pattern, '
(ii) the existence of "sharp" lines in the "Cl nu-
clear-quadrupole-resonance (NQR)" and "Rb
nuclear-magnetic-resonance (NMR)'"" spectra,
and (iii) "Se NMR" line-shape measurements in
the charge-density-wave (CDW) compound 2P-
Ta,Se,.

In this Letter we report a quantitative determin-
ation of the variation of the soliton density n, (de-
fined as the ratio between the number of nuclei
in the incommensurate domain wa.lls a,nd the total
number of nuclei) with temperature in one-dimen-
sionally modulated (~ = 1) structurally incommen-
surate (d = 3) systems using NMR and EPR. The
investigated systems are Rb, ZnBr, (Ref. 13) and
Rb2ZnCl~ (Ref. 14) (via, "Rb quadrupole perturbed
NMR) and y-irradiated K,SeO~ (Ref. 15) [via elec-
tron paramagnetic resonance (EPR) of the SeO~~
centers]. Our data, clearly show the presence of
commensurate domains and incommensurate do-
main walls in the above structurally incommen-
surate systems, similar to what was done for in-
commensurate CDW systems in Ref. 12. Con-
trary to the ease of 2H-TaSe, (Ref. 12) the soli-
ton width is found to be large as compared to the
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intersoliton spacing over most of the I phase.
The temperature variation of the soliton density
close to T, yields a nonclassical critical expo-
nent ~.

The study of incommensurate systems by mag-
netic resonance" "is based on the fact that the
NMR or EPR frequency is a function of the order
parameter and thus varies in space in the I phase
in a way which reflects the spatial variation of
the incommensurate modulation. Since the trans-
lational lattice periodicity is lost, there is an es-
sentially infinite number of nuclei or paramag-
netic centers which contribute to the magnetic
resonance spectrum. Except in the narrow soli-
ton limit one thus expects to see a distribution of
NMR or EPR frequencies which is quasicontinu-
ous.

The density of spectral lines at the frequency v

will be given by

f(v)=Qdv/dxi ',

where N is the number of paramagnetic sites per
unit length. Expanding v in powers of the order
parameter q as v = v, +a,q + 2a,g'+ ~ ~ and taking
into account that the order parameter is deter-
mined by its amplitude A and its phase y, q
=A cosy(x), one finds v= v, + v, cosy(x)+ —,'v,
x cos'y(x)+ ~ ~ . The derivative appearing in
Eq. (1) is thus given by

d v/dx = —(vi + v cosy + v3 cos y + ~ ~ ' )

x siny dy/dx, (2)

obtained as a solution of the sine-Gordon equation

d'y/dx' = a sin(p y),
which admits both plane-mave-like, as well as
multisoliton latticelike solutions. The sine-Gor-
don equation can be reduced to a pendulumlike
equation and numerically integrated on a comput-
er to synthesize NMR or EPR line shapes E(v)
with the help of Eqs. (1) and (2) and the convolu-
tion

E(v) = fL(v —v, )f (v, )dv, ,

where L(v —v, ) is the line shape of a single spec-
tral component.

Figure 1 shows the effect of soliton broadening
on the line shape for y, = 0, p = 3,' ' and v, e 0,
v2 v3 0 for various values of the param etc r
which is related to the relative volume fraction
of the "commensurate" regions, n, = 1-n„ in the
inset. It is seen that for small 6, i.e. , narrow
solitons, we have three peaks at (v —v,)/v, = —1,
—0.5, and 1. When the solitons broaden, the
peak at —0.5 smears out. This is exactly the sit-
uation observed in the "Rb —,

' - ——,
' NMR spectrum

of Rb, znC14 close to T,.
From the temperature dependence of the inten-

sities of the disappearing lines, the temperature

n,

where cosy takes on nearly continuously all val-
ues between —1 and +1 and the coefficients v,
=a,A, v, =a+', v„.. . depend on the nuclear-site
symmetry, the orientation of the magnetic field
with respect to the symmetry elements of the
crystal lattice, and temperature.

The spectral density f (v) will be peaked when-
ever dv/dx becomes small. In the "plane-wave"
limit the phase y is a linear function of x and the
quasicontinuous function f (v) will be peaked when
siny = 0 or when v, + v, cosy + v, cos'y+. . . will
be zero. In the soliton limit y is a nonlinear
function of x and one expects to see additional
"commensurate" lines —occurring when dy/dx
= 0 superimposed on the incommensurate back-
ground. On going to the commensurate phase,
cosy takes on discrete values and only the "com-
mensurate" lines remain.

The spatial variation of the phase y = y(x) is

—0.5

FIG. 1. Effect of soliton broadening on the magnetic
resonance absorption line shape for the initial phase
pp = 0 and p = 3 (Hefs. 6-8) . Only the first-order term
(vi) in the expansion of the frequency in terms of the
order parameter is taken into account. The single-
component line shape L (v- v, ) was assumed to be Lorent-
zian with a half-width p=0.03 v~. The inset shows the
relation between the parameter 4 and the relative vol-
ume fraction of the nearly commensurate regions n~.
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variation of the soliton density n, = 1 —n, has
been determined (Fig. 2). The data can be fitted
to a power law n, ~ (T —T,)'" with a nonclassical
exponent —, differing significantly from the clas-
sical result. The accuracy of the n, data is not
very high but is clearly sufficient to discriminate
between the classical logarithmic and nonclassi-
cal power-law behaviors.

The temperature variation of the splitting be-

FIG. 2. Temperature dependence of the square of the
soliton density in Bb2znC14 as deduced from the Rb
NMR spectra on heating. The cooling run gave a similar
curve with a small hysteresis (-1 K) in T, .

tween the two edge singularities gvcc (Z', -Z')~&
further allows the determination of the tempera-
ture dependence of the amplitude A of the incom-
mensurate order parameter. For both Rb, ZnC14
and Rb, ZnBr~ one obtains a critical exponent P„
= 0.36+ 0.02 which agrees with the d = 3, n = 2
Heisenberg model (Fig. 3). The whole I phase is
thus indeed critical in these d = 3, ~ = 1 systems.

It should be noted that the apparent mean-field
value p„= —,

' quoted in our first report" was due
to the fact that, at the given orientation of the
magnetic field, in addition to the linear term (v,)
higher-order terms (v, and v,) also influenced
the splitting.

The observed "Rb NMR line shape in Rb, ZnCl4
and Rb, ZnBr, as well as the EPR line shapes of
the Se04 centers in K,Se04 are, over most of
the I phase, compatible with the broad-soliton
picture where the soliton width is large as com-
pared to the intersoliton spacing. This agrees
with the fact"" that the "Rb spin-lattice relaxa-
tion rate is determined by phasons in the I phase
of both Rb, ZnC14 and Rb, ZnBr4. The results def-
initely exclude the presence of narrow solitons
except very close to the incommensurate-com-
mensurate transition temperature T,. The com-
parison between the experimental and calculated
line shapes for one of the SeO~~ Q-band EPR
lines in y-irradiated K,Se04 similarly demon-
strates" that the relative volume fraction of the
nearly commensurate regions is only n, =0.01 in
the middle of the I phase at 110 K corresponding
to a phase soliton density n, =0.99. The plane-
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FIG. 3. Temperature variation of the splitting between the two edge singularities in the ~Rb 2 2 NMR spec-
tra of Rb, ZnCI, .
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wave modulation model —which corresponds to
n, - 0—is thus here a good approximation for a
large part of the I phase.
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A dilute n —0 vector model provides a useful description of equilibrium polymeriza-
tion in a solvent. Such polymerization occurs in liquid sulfur solutions and leads to a
lower critical solution point that is analogous to the tricritical point found in 3He-4He

mixtures. In the mean-field approximation, the model is identical to an earlier theory
of Scott. Nonclassical critical behavior can explain certain discrepancies between Scott's
theory and experiment.

PACS numbers: 64.70.Ja, 64.60.Kw, 82.35.+t

Recently we have shown" that equilibrium poly-
merization can be described by the n-0 limit of
the n-vector model of magnetism in a small mag-
netic field, and that evidence for the nonclassical
critical behavior of the n-0 vector model can be
seen in the polymerization of liquid sulfur. In the
molecular-field approximation, the n —0 vector
model becomes identical' with the Tobolsky-Ei-
senberg' theory of equil. ibrium polymerization.

Solutions of liquid sulfur with a variety of or-
ganic solvents are unusual4 ' in that they exhibit

a temperature range of complete miscibility of
the components, bounded below by the familiar
upper critical solution temperature (UCST), T„
and low-temperature phase separation, and bound-
ed above by a lower critical solution temperature
(LCST), I'„boave which the components again
undergo phase separation. Scott4 has presented a
theory of these solutions based on the Flory-Hug-
gins' theory of polymers and the Tobolsky-Eisen-
berg' theory of polymerization, and has shown
that it is capable of reproducing many of the quali-
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