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Geoffrey B. West
Theoretical Division, Los Alamos Scientific laboratory, University of California, los A/amos, New Mexico 87545

(Received 24 November 1980)

A proof of confinement in quantum chromodynamics is presented that relies only upon
general properties of the theory, such as asymptotic freedom and analyticity.

PACS numbers: 12.40.Bb

It is the purpose of this paper to demonstrate
that continuum quantum chromodynamics (QCD)
confines quarks and gluons. Our method employs
a reductio ad absurdum argument whereby the
presumed existence of unconfined quarks is shown
to be inconsistent with calculable ulA"aeiolet pro-
perties of the theory. We shall attempt to show
that no generalized Lehmann-Symanzik-Zimmer-
mann (LSZ) prescription' exists for obtaining
physical matrix elements from Green's functions
when there are quarks (or gluons) in the external
state. Our argument strongly suggests that it is
not possible to factor out external quark (or gluon)
mass singularities, regardless of their struc-
ture, when these particles go "on shell. " A cru-
cial ingredient to the proof is the assumption that
if quarks can in fact go on shell then suitably de-
fined amplitudes satisfy standard dispersion rela-
tions with singularities dictated solely by unitari-
ty. ' Unfortunately, our proof sheds little light on
the precise mechanism of confinement, which, of
course, ultimately one would like to understand.
By the very nature of the problem it is clear that
one cannot proceed without knowing something

about the infrared region. Now, in spite of the
fact that @CD is not infrared stable it does pos-
sess infrared properties that are known with
surety and these are that quarks (or gluons) carry
conserved quantum numbers. For example, no
matter how bizarre the infrared behavior of the
theory the charge of a "near-mass-shell" quark
is a known, conserved quantity.

We shall begin, therefore, by assuming that
QCD is a ' normal" theory so that, for example,
a quark can go on shell in the usual way and then
examine what happens if we attempt to probe its
structure with a current, j„, conserved by virtue
of the equations of motion. Consider, then, the
following vertex function:

G„(p,p )u(p) -=Jd'xe""(Ol Tl ~„( )y(O)]l p). (I)

Here, ~ p) is an assumed free-quark state of mo-
mentum p and mass M; i.e., p' =M'. We nor-
malize the interpolating quark field g such that
«I y I P) = I. In the usual LSZ formalism, ' I „
—= (P'-M)G„reduces to the mass-shell vertex
function, free of singularities in p" (—= W'), when
the limit P'-M is taken; its most general form
is

I" (p p') =[(p' —W)/2W][E, (q', W)y„+E,(q', W)io„„q'+E,(q', W)q„]+(W- —W). (2)

Note that I'„satisfies the following Ward identity:

qual"„(p, p ) =(p" -M).
In terms of the +'s, this reads

[E,(q', w) —I](w -M) =q E,(q', w). (4)

Now, the presumed existence of (1) can be combined with causality in the standard way to establish
fixed q'& 0 analyticity properties for the I"; in the upper and lower halves of the cut complex 8' plane. "
Furthermore, the assumption of spectral conditions allows one to write dispersion relations for the
E;(q', W). Their absorptive parts can be obtained from

I I'„(p,p ) (p) =~5 (P'-M)(OI gl N)(Nlf„l p)(2~)'~"&(p„ (5)

wher«he I N) represent a complete set of states. The Schwarz inequality can be used to bound the
ImE; in terms of products of the quark spectral functions' p;(W') and their inelastic structure functions
W;(q', W'). Inserting these bounds in a dispersion relation leads to bounds on the E;(q', W) themselves.
Such bounds were already derived some time ago4; however, these were outside of the context of a
gauge theory, and this presents some special problems. In a Lorentz gauge, tacitly assumed in writing
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Eq. (2), for instance, the Hilbert space contains states of negative norm which forbids the use of a
Schwarz inequality. Thus, if we are to bound Eq. (5) in this way, a gauge must be chosen which is
ghost-free. A convenient set of such gauges is the axial one defined by n A. ~=O where A. „ is the gluon
field and n an arbitrary vector of fixed nonzero length. Since I'„ is a gauge-dependent quantity, it,
and consequently the I";, now have an implicit ~z dependence. The development can be considerably sim-
plified if n is chosen to be perpendicular to the hyperplane defined by p and q. The most general form
for I'„ is I instead of Eq. (2) J then

r„(P,P,~) = (F,r„+F,1~„.V'+F,V„+F, „'/+(W-- W) +( -- ).g+n P' —W

It is easy to check that this decomposition leaves Eq. (4) unchanged, except, of course, for the added
implicit n dependence. We shall need the (positive definite) quark spectral function:

p + (W', 12) = Tr
2 2

ImSF (p', n).
1 P'+W g+n

It is actually more convenient to use linear combinations of the E; analogous to G~ and t"
&, for exam-

ple, define G~ =F, +q2(tI/+M) 'F, then

Here Q' -=—q2-0 and W1, is the longitudinal quark structure function.
We now exploit the analyticity properties of the theory which together with the Ward identity, Eq. (4),

lead to a "sum rule" of the form

1-F,(Q,M) = —— dW (9)

This is valid provided, of course, the integral converges. The normalization, 1, which plays a cru-
cial role in the ensuing argument represents the static quark charge F,(O,M). Note that because the
E; were defined through I"„rather than ~„ the integration over 8' excludes the contribution from the
single particle singularity at W =!& (here assumed to be a simple pole). A similar equation can be de-
rived for G~ except that there is an added contribution on the left-hand side arising from the kinematic
singularity at W = -M'; indeed, F,(Q', M) in (9) is replaced by G(Q') = G&(q', M) —(q'/2M)F 2(q', -M).
Equations (8) and (9) can now be combined to derive the followirg inequalities:

I 1 —G(Q') I
- (2M Q')' "dW'p '"(W') W '"(q' W')

~ (W+ &) I. (W -M)'+ Q2P/2 (10a)

( (2M Q2)1/ ,/, („1)1/2p. ' 'tq'(~ —I)i /.
' '(q', &) ~ (10b)

In writing (10b) we have transformed to the scaling variable ~ =2Mv/Q2 and, in anticipation of taking
the large-Q' limit, have suppressed terms of O(M'/Q'). In an asymptotically free theory both the large-
Q2 behavior of FI (Q2, +) ana the large-W behavior of p+(W2) are calculable. The former is, of course,
well known and vanishes like (log Q )

' faster than the conventional transverse piece. e The behavior of
p, is less well known; however, in axial gauges a straightforward calculation shows W'p, (W')- (lnW') ("', where ~ )0, as W'- ~. Putting these together, one concludes that the right-hand side
of (10b) vanishes logarithmically as Q'- ~. This can be seen in a slightly different way by applying the
Schwarz inequality to the integral itself to obtain

I1 —G(q)I - (z ' —1) dx—

where' fdW'p, (W') =-&2 ' —l.
In the axial gauge used here, &, is finite. The integral over I' » on the other hand, vanishes for

large Q' so that the right-hand side of (11), and consequently (10), also vanishes. The left hand side, -
ho1veve2', does not in general vanish; only if the "elastic" form factor G(Q') —1 as Q —~ would this
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happen. Indeed most investigations' have found that Gs(Q') - exp(- in'Q') and this can be readily extend-
ed to G(Q'} itself. We have thus arrived at a contradiction. The crucial assumption made was that
quarks can go on shell in the usual way and that this leads to standard dispersion relations in the 8'
plane. One might therefore tentatively conclude that QCD does not allow quarks to be free. However,
before doing so we must discuss more precisely what 'going on shell in the usual way" means and clari-
fy what this has to do with confinement. It is obvious that the 1 in Eqs. (10) and (11) is critical in allow-
ing an inconsistency to develop. As already mentioned, this is associated with the "static charge" of
the quark. However, a further crucial ingredient is the presumed existence of the matrix element
(0~ g~ p&. To see how this is related to the singularity structure of the propagator, consider the general-
ized vertex where both fermions are off shell:

G„(p,p ) =fd xfd'ye"""" (0I T4(y)&„( )q(0)ll o&.

According to the conventional LSZ prescription, the original vertex, (1), is given by G„(p,p )
=limy ~(P —M)G„(p,p'). Now, the Ward identity (W.I.) for G„reads

q G„(p,p)=s, (p}-s,(p) ~

Thus,

q" G p (P,P') = lim(P' -M)SF (P)
$ ~M

(12)

(13)

which agrees with Eq. (3) only if SF(p) has the canonical (p -M) singularity when p-M. The factor
]. in Eq, (9) therefore represents, not only the static charge, but also the normalization resulting from
the cancellation of this pole by its inverse. We can therefore interpret the inconsistency as a state-
ment that, in QCD, the quark does not go on shell via the standard simple-pole singularity prescription.
This, of course, is hardly surprising since the masslessness of the gluons inevitably gives rise to an
infinite number of thresholds beginning at 8' =M and these presumably alter the structure of any LSZ
formulation. In quantum electrodynamics (QED) we know precisely what happens since the infrared be-
havior is calculable: a cut develops. Typically, the propagator behaves like SF'(p) —= (p-M)(p2
-M') ~"" 'when p-M where A is a calculable number. ' The fact that Sp'(p) is not a simple pole does
not, of course, mean that electrons cannot be detected. The miracle of QED is that one can cut an ex-
ternal electron line in such a way that it takes with it the right infinite combination of photons to make
a real detectable electron. Formally this can be expressed in terms of a generalization of the conven-
tional LSZ formalism': define a Green's function analogous to Eq. (12)

G(p»p». . .,p„)—:fd x,fd x2 fd4x„,e px(ig p; .x~)(0) r[g(t'„,) . A&2)g4'~) ~l 0&i (15)

then the corresponding "S-matrix element" is

S(p„.",p.)

Apart from singular interparticle Coulomb phases,
the external mass singularities in G are precisely
cancelled by the inverse propagators leading to a
finite gauge invariant S from which the physical
cross section can be calculated. ' We now gener-
alize this in the following way: We define a theo
ry to be a nonconfining theory if it is possible to
derive the S matrix by multip/ying the correspond
ing Green, 's function by the inverse propagators
of the external fields taken one at a time in the
limit as each field approaches its mass shell. A
confining theory is defined to be one cohere this
is not possible In general, one. expects this defi-

I nition to be augmented by singular interparticle
phase factors for each particle as it goes on shell.
However, for the case considered here, namely
G„of Eq. (1), there is only one on-shell particle
so the question of interparticle singular phases
is irrelevant. Let us suppose then that when P
-M, SF (p) -SF'(p) which in QCD is unknown.
If the theory is nonconfining the vertex analo-
gous to G„of Eqs. (1) and (13) is G„'(p,p')
=limy ~ISF'(p)] 'G„(p,p') and, by assumption,
this exists. The W.I. for G„' reads

V"G, '(p, p') =»mISF'(p) ~ '~~~(p) —SF(p')~ (17}
$ ~M

which equals 1 provided lim~ ~[SF'(p) j ' vanishes.
It is obviously most convenient to consider I'„
—= (p" -M)G„', as before, since this preserves the
form of our previous equations. ' We therefore
see that the "1"that occurs in the inequality is
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simply a reflection of the "1"embedded in the
generalized W.I., Eq. (17). Thus, the inconsis-
tency that resulted before remains valid regard-
less of the structure of SF'(P). We therefore con-
clude that QCD does not allow quarks to go on
shell and, consequently, that it confines t Some
remarks are in order:

(i) The calculation was performed in an axial
gauge. An entirely different gauge for this prob-
lem is the projected Lorentz gauge of Oehme and
Zimmerman' in which only the positive definite
part of the Hilbert space is used. An identical
result follows; indeed they prove that, in their
"gauge", not only is S„(p') analytic in W, but

that Z, is finite.
(ii) The form of the basic inequality is model

independent. The critical ingredient from @CD is
that asymptotic freedom ensures that both E~(Q',
x) and p, (W) vanish sufficiently fast asymptotical-
ly. Note that, since neither @CD nor standard
spontaneously broken gauge theories are asymp-
totically free, no inconsistencies arise there.
Furthermore, it is not difficult to check that the
inequality is satisfied in the infrared (i.e., in
perturbation theory) since the crucial "1"on the
left-hand side is canceled by G(Q') -1+0(g'), as
g- 0. Thus, as expected, confinement is not a
property of perturbation theory.

(iii) In drawing conclusions from Eqs. (10), we
have apparently made no reference to the explicit
particle under discussion. However, had it been
a nucleon, for example, its field would be at

least cubic in g. Ordinary dimensional arguments
would then require p„(W') to be highly divergent
for large S" allowing the inequality to be well
satisfied, and nucleons to be free.

(iv) Finally, we note that one can use any con-
served current occurring in the theory to generate
this result. Thus, for example, one can extend
the technique to show that gluons are confined by
using the energy-momentum tensor. This, and
various other aspects of the problem will be ex-
plored in a later paper.
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