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Systematic Optimization of Tokamaks for Ideal Magnetohydrodynamic Stability
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High-P plasmas, stable to all ideal magnetohydrodynamic modes, have been found by
joint optimization of plasma cross sections and current profile shapes. No wall stabili-
zation is used for the external kink. Dee cross sections are considered with varying as-
pect ratios. The maximum stable P varies from 5% at aspect ratio 4 to 10% at aspect
ratio 2.5, and the optimum elongation is 1.8. The low-n kink modes are the most limiting.

PACS numbers: 52.55.0b, 52.30.+r, 52.35.Bj

Tokamak reactors become increasingly attrac-
tive for high values of P (~ 5'%%uo), the ratio of plas-
ma. to magnetic pressure averaged over the plas-
ma volume. Recent ideal magnetohydrodynamic
(MHD) stability calculations predicted stable P
values of 10/o and above. ' ' These studies as-
sumed a superconducting wall at the plasma sur-
face" or very close to it' (wall radius 20% larger
than plasma radius). A superconducting wall sta-
bilizes external kink modes, defined here as
modes with small toroidal mode numbers 0 &n
~ 3 which perturb the plasma surface. Since the
designs for future tokamaks (ETF' and INTOR')
have resistive walls, we re-examine in this paper
the stability of ideal MHD modes assuming no
wall stabilization of external kinks. We assume
that the axisymmetric mode, n=0, can be stabil-
ized by feedback from an appropriate poloidal
coil system.

Without a wall to stabilize kink modes, P= 8/o

has been predicted for a plasma of aspect ratio
2.4, stable to all ideal MHD modes. " This value,
higher than previous estimates, ' ' was obtained
by optimizing the current profile while keeping
the plasma shape fixed. For an aspect ratio of 4
(typical of ETF and INTOR), similar computa-
tions predict a significantly lower P limit, P
=3.5'%%uo. We find that, by removing the fixed pla, s-
ma-shape assumption and by optimizing both
plasma shape and current profile, the limiting P
is increased to 5/o, similar to the design value,
if the elongation is -1.8.

MHD equilibria are obtained by solving the
Grad-Shaf ranov equation:

R'V ( V(/ R') = p, ,Rj ~
= —iJ.,R'p'-ff',

with standard notation. ' For this study we use a
family of current profiles of the form

j ~
= Cj5[exp(1 —( ) —1]A/R, +(1 —5)[exp(1 —P

In Eg. (2), g =((—(o)/(g, —go). n is a measure
of the width of the pressure profile; o. =1 corre-
sponds roughly to a typical Qhmically heated pro-
file while larger values of a give broader pro-
files. y defines the variation of the toroidal field,
and 5 varies the poloidal beta (P~). The indices 0
and l refer to the magnetic axis and limiter, re-
spectively. C is used to normalize our equilibria
to a constant toroidal current. Each equilibrium
is calculated as a free-boundary problem with
use of the geometry shown in Fig. 1. A, is the
geometric center of the limiter. The poloidal
flux 2m'/r is specified at the labeled points, as a
model of the coils which determine the plasma
shape. Up-down symmetry restricts the number
of shape parameters to six. These six parame-
ters along with n, y, and 5 are optimized nu-
merically for the maximum stable P. We define

P = 2 p, fP d V/(B. ,' fd V) and use the def initio n"

) —1]A /R]. (2)

To determine the stability to all ideal MHD

modes, we use several distinct, complementary
numerical techniques. Stability to high-n modes
is evaluated with the ballooning criterion in the
limit of infinite toroidal mode number. ""For
computational accuracy, we also evaluate the
interchange mode criterion" at the magnetic axis.
Stability to low-n modes is evaluated with the
global code EH,ATO, ' which computes the eigen-
frequencies and eigenmodes with use of finite
elements to minimize 6W. We consider only the
n = 1 external kink mode since, without a wall,

!
p~=(2 w) fpdV/f(V/V')I'dg, for which p~=1 when
f'=0. B, is the vacuum toroidal field measured
at radius A, . To vary the safety factor, we use
the simple scaling law'

1286 1981 The American Physical Society



VOLUME 46, NUMBER 1'9 PHYSICAL RKVIKW LKTTKRS 11 MAY 1981

l2

!
!

2 I&

!

!

!
1l

!
!

b
4&&

Ro!
b/a = 1.8

6
'-: 5

FIG. l. Equilibrium geometry. Inner rectangle is
the limiter. g is specified on labeled points.

this mode is more unstable than higher-n kink
modes. '

The optimization is automated as in Ref. 2, and
takes many iterations. One iteration proceeds as
follows. One of the parameters to be optimized,
P, , is incremented by ~, . An equilibrium is
calculated. For that equilibrium, a critical value
of P, P„is calculated for marginal stability to
ballooning modes by scaling the toroidal field
(and q,). Then, if P, has increased since the
previous iteration, stability to the n =1 external
kink is evaluated, keeping q, fixed at the critical

value for internal mode stability. If the external
kink is stable, the parameters of that equilibrium
are saved. The optimization is completed by se-
quentially varying each parameter until a maxi-
mum P, is reached. Typically, 100 to 200 itera-
tions are necessary. Computing time is reduced
to 2-4 h on the Cray computer because of exten-
sively optimized numerics and a new method used
to determine stability to kink modes.

Previously, ' stability has been determined by
computing growth rates for a sequence of values
of N, the number of mesh points, and extrapo-
lating to N-~. The numerical precision can be
defined as the difference between the extrapolated
zero growth rate and the smallest growth rate of
the sequence. The precision on A. =!~'q, '~„'!
has been as low a,s 10 '

(&u
„

is the Alfvdn freciuen-
cy). ' We have improved the numerics to achieve
a precision of 10 . With this precision, a con-
vergence study with mesh size is not necessary,
and we consider an equilibrium to be stable when
the condition A. ~10 is satisfied. A better pre-
cision (A &10 ') need not be considered, as resis-
tive effects should then be included. This new
method is about ten times faster than the previ-
ous one. ' At values of A. -10 '-10 ', EHATO finds
"unstable" Alfven continuum modes. These in-
stabilities are purely numerical since the mar-
ginal point is the lower bound of the Alfven con-
tinuum. These modes are localized on rational
surfaces. We achieve a precision of 10 ', in part
by accumulating g grid points at rational surfaces
and in part by weighting points with dq/dg, since
the shear varies greatly for high-P equilibria.
More precisely, defining s = @ ', As the distance
of two adjacent points, N, the number of radial
points, and 1V„the number of points accumulated
near rational surfaces, the following repartition
law proves adequate:

1 1 2 N, -N„1
w(s) = =—+ — ' " q'+w, g (s —s„)'+

N Ds 3 3 N q)-q
Nu &i-&0

„(x,-x) q, ' (4)

where index 0 indicates a rational surface, q'
= dq/ds, and w, is chosen to normalize Jo'ds w(s)
= 1. Typically, we have chosen N, = 60, N„=20,
and the number of po1.oidal points N„=40.

Figure 1 shows the optimum plasma shape for
a plasma of aspect ratio 2.53 and elongation 1.76.
The optimum P is 10.2% at a precision of 10 ' for
kink mode stability and only changes to 10.4% at
a Precision of 10 '. The shape is triangular at
the outside edge of the plasma and straight on the
inside edge. Triangularity at the outside edge

minimizes the plasma volume in the region un-
favorable to the kink. It also decreases the con-
nection length between bad and good curvature
regions which improves ballooning mode stability.
In contrast to Ref. 2, there is no indentation at
the inside edge (favorable to the ballooning mode)
in order to minimize the amount of current flow-
ing close to the surface.

The optimum current profile is broad and P~
&1, giving a safety factor at the surface q, -3.
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TABLE I. Optimum P, , Pp and current profile pa-
rameters for different aspect ratios. For comparison,
we include the definition (Refs. 8 and 10) P* = 2p, (j P 'dV
fdv)"'/(&, ' fdt ).

R ala &la p po) p*Pd p~

q 2

2.53 1.76 10.2
3.18 1.90 7.16
3.86 1.89 5.10
4.59 1.82 3.8

13.1
9.49
6.78
5.09

0.53 5.5
0.64 4
0.78 4.2
0.99 4

5.5 0.6
7.34 0.741
5.15 0.826
6.85 0.995

FIG. 2. Safety-factor profile for the equilibrium
shown in Fig. 1.

This low value of P~ yields flux surfaces well
centered inside the plasma surface and reduces
the current gradient at the outside edge, a good
effect for stability to the external kink. For the
optimum shape and current profile (p~&1), the
marginal stability value of q, for ballooning
modes is less than one. In contrast, the internal
kink limits q, &1. The external kink is then the
mode which limits P. The optimum q profile
(Fig. 2) shows small shear inside the plasma and
strong shear close to the plasma surface. The
pressure profile is bell shaped, as expected.

We have repeated the same computations. for
different aspect ratios, keeping the elongation of
the limiter box fixed and equal to 1.5. Figure 3

b—= 1.8
a

shows examples of optimum shape and current
profiles, and Table I shows optimum values of P
and P~. Since the plasma shape is optimized, the
elongation values shown in Table I represent opti-
mum values. This is verified by repeating our
computations with a limiter elongation equal to 2,
and obtaining similar results. The data of Table
I may be fitted approximately with a scaling law
P~(R, /a) '~'. By interpolating the values of
Table I, we find P = 5% at aspect ratio 4 and elon-
gation 1.8. This is comparable to the recommend-
ed design value of ETF' and INTOR. ' Higher val-
ues of P could be obtained by reducing the aspect
ratio or by using a wall to stabilize external
kinks.

In summary, the results of our combined opti-
mization of plasma and current shaping are as
follows: (i) optimum plasma shape and current
profiles are similar for different aspect ratios;
(ii) the optimum plasma shape is triangular at
the outside edge and straight on the inside edge;
(iii) the optimum current profile is broad and P~
is less than unity; (iv) the optimum elongation is
approximately 1.8; (v) provided internal kink
mode stability is attained by forcing q on axis to
be above unity, we find that the most restrictive
modes are the low-n external modes and not the
high-n ballooning modes.

We thank R. L. Miller, G. E. Guest, F. J. Hel-
ton, D. Dobrott, W. Kerner, and R. Qruber for
stimulating discussions, and B. Davidson and
B. Dy for programming assistance. This work
was supported by the U. S. Department of Energy,
Contract No. DE-AT03-76ET51011.
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a
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a

FIG. 3. Examples of optimum shapes and current
profiles at different aspect ratios.
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High-resolution ac calorimetry measurements have been performed on a liquid-crystal
material exhibiting a stacked-hexatic-B-smectic-A phase transition. The transition ap-
pears to be second order with a pronounced, symmetric heat capacity peak and no ob-
servable thermal hysteresis. The data can be fitted by a power law divergence with criti-
cal exponents + =o."=0.64+ 0.04 and a ratio of critical amplitudes A/A. ' =0.83. Measure-
ments have also been carried out on a crystalline-B-smectic-A transition which is found
to be first order.

PACS numbers: 64.70.Ew, 61.30.-v

It is well known that some liquid-crystal ma-
terials exhibit a layered phase with hexagonal
in-plane ordering. ' This phase is referred to as
a smectic B or, simply, B phase. Recent experi-
ments' ' have established that, among the B
phases in different materials, there are two
microscopically distinct types. The first type is
a crystalline phase. X-r ay measurements'
demonstrated that this B phase has long-range,
three-dimensional (3D) positional order. Its
crystalline nature was confirmed by mechanical
measurements which showed that this phase sup-
ports a shear both within" and between' its lay-
ers. The second type of B phase was first identi-
fied by its lack of interlayer correlations. ' A

detailed x-ray study' demonstrated that the second
B phase has only short-range in-plane positional
order but long-range 3D sixfold bond-orientational
order. The mechanical measurements' demon-
strated that the second B phase does not support
an in-plane shear.

The possibility of a phase characterized by bond-
orientational order was first discussed in the con-
text of two-dimensional (2D) melting. ''0 A bond-
orientationally ordered phase (a hexatic phase)

was predicted to occur between the 2D solid and
liquid if 2D melting was a dislocation-mediated
second-order phase transition. Subsequently, a
3D liquid-crystal phase was proposed which con-
sisted of stacked, interacting 2D hexatic layers. "
The structural and mechanical properties of the
second B phase are those expected for this 3D
stacked hexadic phase. We, therefore, refer to
the first type of 8 phase as a crystalline B and
the second as a hexatic B. Both B phases can
melt into a higher temperature smectic-A (A)
phase with fluidlike layers.

In this paper we report detailed heat-capacity
measurements on the hexatic-B-A transition.
This transition is important to study because the
liquid-crystal hexatic B phase is the only system-
in which the existence of hexatic ordering has
been proven. We will also report measurements
on the crystalline-B-A transition which we find
to be first order. In contrast, the hexatic-B-A
transition is second order exhibiting a symmetric
heat-capacity peak with no observable thermal
hysteresis.

The liquid-crystal compounds that we chose to
study were N-(4-n-butyloxybenzylidene)-4-n-
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