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Importance of Coulomb Effects in Half-Shell Scattering
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The half-shell cross section for charvged-particle scattering is discontinuous at the on-
shell point. Moreover, its limits for p =%~ and p—~#" not only differ from each other,
they also differ from the corresponding on-shell cross section, often by appreciable en-
ergy~-dependent factors. This has important consequences for the theoretical description

of bremsstrahlung and quasifree data.
PACS numbers:

The description of many scattering experiments
involving composites of charged and neutral par-
ticles can be given in terms of half- (on-the-
energy-) shell scattering amplitudes. Examples
of such processes are knockout reactions and
other quasifree processes in particle and nuclear
physics. Also in bremsstrahlung processes half-
shell scattering occurs, and the primary goal of
many bremsstrahlung experiments has been to
obtain information on the off-shell behavior of
scattering amplitudes, or transition (7) matrices.
In the case of short-range interactions the off-
shell T matrix is a continuous function of the off-
shell momenta at their on-shell value. For inter-
actions with a +"! tail at large distances (charged
particles) this is no longer the case. This fact
and its consequences have hitherto not received
the attention they deserve. They constitute the
subject of this Letter.

It is well known that, in the case of charged par-
ticles, the long range of the Coulomb interaction
is a source of special difficulties. One of the ef-
fects of the long range is that the (physical) half-
shell and the off-shell Coulomb T matrices have
(branch-point) singularities at the on-shell value
of the physical half-shell and off-shell variables.
These singularities lead to physically observable
effects. We adopt notations and conventions
developed and used previously.? A convenient
framework is provided by so-called (Coulombic)
asymptotic states |Kw+)., Often we suppress the
+symbol in this notation. We consider scattering
by a potential V=V .+V,, where V, is a short-
range potential, and V(r) =Ze?/r =2ky/¥ is the
Coulomb potential. We set =1 and 2m =1, so
that £ =k? is the energy, and y is Sommerfeld’s
parameter. The T operator can be split into a
pure Coulomb part T and a remainder T, T
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24.10.-i, 24.50.+g, 24.90.+d

=T +T,. The on-shell and half-shell amplitudes
are connected to the physical on-shell T matrix
(k=F’) and the physical half-shell T matrix
through®2

—(2772)-1f0n(é 'é') = <E’°°" i Tle>,
k'+k, k'=kcR*, (1)
—(ZHZ)_lfMIf:<§lTlﬁw>y p*ky (2)

respectively. The argument of the T operator is
(k+i€)?, €—~0", Often we write & for 2 +ie, €—~0",
For the pure Coulomb T operator T the physical
on-shell and half-shell elements are known ex-
plicitly, 2

(27 Clke k7)) = (K 0 —| T |K =)
4k2>i7

k .
ZHTZQE exp(2wo)<

Ga (3)

—(272) ™Yyt © = (B T [K )

N A
=Coexp(zoo)ﬂ2;'2<p = ) ,  (4)

where f € is the Coulomb amplitude, @ and q are
momentum transfers,

Q=K'-K, q=p-kK. (5)

Throughout we take p=k’, so that lim, , q=Q.
The Coulomb phase shift is o,=argI'(1 +iy), the
Coulomb penetrability is C 2 =27y /[exp(27y) — 1].
Amplitudes and cross sections are related through
o(x) =f*f. For the pure Coulomb case Eqgs. (3)
and (4) give

Oparr B - ) = 0o, V(R -R)C2B%QY/ %, (6)
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where & (for p #%) is defined by

_J1lfor p>k,
exp(my) for p <k.

Equations (3) and (4) show that the (on-shell)
limits for p -2~ and p -~k " of the physical half-
shell T matrix element {p| 7 |K =) are not equal
to the on-shell T matrix element. Both these
limits do not exist. Nevertheless, the on-shell
limits for p —%" and for p —k* of the modulus of
the physical half-shell T matrix (of the half-shell
cross section) do exist. However, these two
limits differ from each other, and both differ
from the modulus of the physical on-shell 7" ma-
trix (from the on-shell cross section), according
to

(7)

lim oy, =exp(=27y) lim 0y =Cy’0q,.  (8)
p > kY p >k~
For a repulsive Coulomb potential (ky >0) the p
-k " limit of oy, is smaller than o,,, whereas
the p —k~ limit is larger than o,.

In the pure Coulomb case Eq. (6) shows that the
ratio 0y,/0,, consists of two factors. Only the
first one, C, 282 survives in the on-shell limit,
cf. Eq. (8). For p#Fk it is independent of p, i.e.,
it is not dependent on how far one is off shell.
Instead, it is highly energy dependent through y
= 3Ze?/k. The other factor, Q*/¢%, lies between
0 and (4 +%p/k) % for all p, k>0, For fixed & -£’
it depends on the off-shell variable p/k only. For
p >k it represents a suppression factor (between
0 and 1) which is particularly effective in forward
directions. Note that if we consider the cross
sections as functions of energy and momentum
transfer (instead of energy and scattering angle),
the following relation between o}, “°"(E, 42 and
Oon U (E, @) holds:

O haif Coul (Ey qZ) =0Oon Coul (Ey qz)cozaz . (9)

Note also that in half-shell scattering the magni-
tude of the momentum transfer ¢= |p -K| can take
values larger than 2k, if p >k. Such large values
of g are inaccessible in on-shell scattering,

In principle Eqs. (6) and (8) for the pure Cou-
lomb potential have been known for twenty years
already.'™ In this Letter we wish to point
out that Eq. (8) holds true fov any potential V-
+Vs. The mathematical proof of this is simple.
For k=Fk’,

Tcs ik’/ °°>:(1 + TC Go)tcs |EI +>C ’
where the operator {,, satisfies

te(E) =V +V,Gc(E)t (E),

(10)
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|K +)c are Coulomb scattering states, and G,

and G are the usual free and Coulomb resolvents,
respectively. Let [d®p (K —|p)(p| operate on
both sides of Eq. (10). Upon using'?

(Koo — | p)=(p|K )

b ie\-iY Ty/2
=6(p, k) lim (P k “) =

e—so0t p+k (1"'7:')’),

we find

—b—je\-iY my/2 N N
lim lim <p k “) <e .)><p|T|k’oo>

bk csot\ DtE r(1-idy
= (Koo —| 7[R ),
so that
 (p—k\Y .
11H;<h> (| T|k’ )
b~

=C,exp(-io)(Kw—|T|k’ »), (11)

By virtue of Egs. (1) and (2) this proves Egs. (8)
and (9) for potentials V. +V,.

The physical ingredient in this proof is that it
is only the Coulomb tail of the potential which
determines the singular behavior of the half-shell
cross section as given in Eqs. (8) and (9). It is
instructive to consider the case that V, is a rank-
one potential in the partial-wave space charac-
terized by [/,

Vs.z="7*zlgz><gz|, (12)

where the form factor g is taken of a simple ra-
tional form

(pleg)=g(p)=(2/mMV2pt (p? +3)7171,

For I=0 (Yamaguchi potential) and for /=1 closed
analytical expressions for f,, and fy,; are given
in the existing literature.”? Recently we have
succeeded for arbitrary / to calculate the ampli-
tudes (1) and (2) in closed form, too.* Obviously
they satisfy Eq. (11), and hence Eq. (8).

For the Yamaguchi case we show in Fig., 1(a)
the ratio o, (E, ¢%)/0.,(E, ¢ for seven E values
as a function of ¢g. As an illustrative example we
have chosen the parameters Ze?, A, and B to fit
low-energy 'S, proton-proton scattering data,
Ar=2.4fm™% and f=1.1 fm™!, No Pauli symmetri-
zation was carried out, For the same E values
Fig. 1(b) gives the ratio 0,;(E, 6)/0,,(E, 6) as a
function of 6, with cos¢=p<£. Curves are labeled
from 1 to 6, corresponding to the values of the
half-shell variable p/£=0.8, 0.9, 0.999, 1,001,

(13)
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FIG. 1. (a) The half-shell ratio oy &, ¢%/0on(E, ¢
vs g/k and (b) opgf (E, cosb) /ooy (E, cosb) vs 0, for pro-
ton-proton 150 parameters Z=1,A=2.4 fm™3 B=1.1 fm",
without Pauli symmetrization. Plots for seven energies
E=Fk? are given; from bottom to top £=0.04, 0.07, 0.1,
0.2, 0.5, 1, and 2 fm'l, so that in the center-of-mass
system E=0.664, 0.203, 0.415, 1.66, 10.4, 41.5, and
166 MeV, and Y=0.43, 0.25, 0.174, 0.087, 0.035, 0.017,
and 0.0087, respectively. In each plot the labels 1—6
correspond to values of the half-shell variable p/£=0.8,
0.9, 0.999, 1.001, 1.1, and 1.2, respectively.

1.1, and 1.2, respectively. All curves 3 (p/k
=0.999, nearly on-shell) are practically straight
lines at C,2exp(27y), in agreement with Eq. (8).
All curves 4 (p/k=1.001, nearly on-shell) are
practically straight lines at C,?, also in agree-
ment with Eq. (8). The curves 3 and 4 lie far
apart when y is large (large charges, low ener-
gies). Curves 1, 2, 5, and 6 correspond to cases
further off shell. At very low energies the Cou-
lomb force dominates at all momentum transfers,
and the half-shell ratio is given essentially by
C,28% [ Fig. 1(a)], or C,282Q*/¢* [ Fig. 1(b)]. In
these cases suppression of 0y, compared to o,
is enormous, when p >k. For p <k we have an
enhancement. (Note that when the signs of the
charges are opposite, there is suppression for

p <k, and enhancement for p >k.) At somewhat
higher energies the Coulomb effects still dom-
inate for low momentum transfer. For some
intermediate value of g/ (or ) strong fluctua-
tions occur as a result of interference effects.
For larger ¢ (or 6) the half-shell ratio again is
more or less constant. In most cases it differs
from the value 1 more than C 282 (which gives
the ratio in the on-shell limit).

Only at high energies does the influence of Cou-
lomb effects become small for most momentum
transfers. The ratio is close to the ratio corre-
sponding to the Coulomb potential switched off
(V¢ =0) only at the highest energies, and only at
large values of ¢q. In our example the half-shell
ratio for V¢ =0 is trivially g%(k)/g%p). In Fig.
1(b) the strong suppression near =0 due to the
suppression factor @*/q* [cf. Eq. (6)] is manifest
in all cases. Also in the region of interference
the behavior of the curves in Fig. 1(a) and of
those in Fig. 1(b) is rather different.

In the proton-proton system the Coulomb po-
tential is weaker than in many other nuclear sys-
tems. Therefore in other systems Coulomb and
interference effects may be expected to be even
more important. In the description of many quasi-
free (QF) processes 0y,;; for the process a +b —~
a+b, or A+b—~A +b, enters the expression for
the differential cross section for a knockout or
breakup experiment A(a, ab)B, or A(c,ab)B, as a
factor.>® For example both in plane-wave im-
pulse approximation and in distorted-wave im-
pulse approximation

dio

49 49
aQ , dQ,dE

=N.g+(PSF) -(MD) - a2 |y’

(14)

where the phase-space factor (PSF) is known,
and (MD) is a factor containing a (possibly dis-
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torted) momentum distribution and spectroscopic
factors. In many cases the shape of the left-hand
side of (14) is well described by the theory,
whereas the absolute magnitude is not. To ob-
tain agreement between theory and experiment,
one introduces a renormalization factor N 4.
Often 0y, is assumed to be equal to o,,, which
then is taken from two-body experiments. This
assumption, as we described in this Letter, may
be wrong. How wrong depends on the following:
(i) How far the half-shell momentum p is off
shell. For p >k, but p close to 2, Eqgs. (6)-(9)
suggest that the error will be a p-independent
factor C,% (ii) To what extent the Coulomb inter-
action (or interference) dominates the mechanism
of the QF process. In forward directions, and at
low energies, the Coulomb interaction does domi-
nate, even when p is far off shell. Obviously C,?
can give suppression by orders of magnitude !

The factor C,24% has, to our knowledge, re-
ceived little attention. It is p independent (if p
#k), and strongly energy dependent. In fact, it
has a behavior similar to the energy dependence
of N.i observed empirically”: For repulsive
interactions N.g decreases rapidly when % de-
creases. In bremsstrahlung a similar effective
suppression factor is observed with the same type
of energy dependence.® For large y we suggest
that the analysis of QF data (i) include for p >k
the factor C,? in the replacement of 0y, by 0,
[ctf. Egs. (9) and (14)], and thereby (ii) take the
on-shell cross section at the same momentum
transfer as the half-shell cross section, and not
at the same scattering angle [cf. Eqs. (6) and (9),
and Fig. 1]. Thereby not only is the normaliza-
tion of theoretical spectra affected, but also (to
a much lesser degree) their shape. In a practical
example this recently proved successful.® We
expect it to be important in the theoretical de-
scription of more of the wealth of experimental
QF data. It will also be an improvement in the
means for obtaining spectroscopic information.
It remains interesting to investigate the half-shell
cross-section enhancement for these cases in
which C 2 #2>1,

We note that expanding half-shell cross sections
around their on-shell point, as is common in
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theoretical descriptions of bremsstrahlung ex-
periments, deserves the utmost care.

We close with a remark on the physical conse-
quence of the discontinuity Eqs. (4), (8), and (9).
In the transition from time-dependent to time-
independent scattering theory one constructs
physically meaningful wave-packet averages.
Thus the half-shell T matrix has to be integrated
over a momentum space distribution. In view of
Eq. (4) one should consider fks YF(R)(p -k —ie) MR
xdk, where f(%) is a smooth function and %, - &,
is small. When p lies outside the integration
interval (&, k,), the argument remains unchanged:
The modulus of the integrated amplitude has a
discontinuity with the same jump as discussed
before. When p does belong to the interval (k,, 2,)
we get a smearing effect. The net effect of wave-
packet averaging will be that the jump becomes
a quasijump. This is similar to the effect of
screening of the pure Coulomb potential. How-
ever, the overall jump remains the same, i.e.,
if one is not too close on shell, the cross section
will show a jump, given essentially by the quanti-
ty & defined by Eq. (7). Integration with respect
to p is quite similar. Finally, integration with
respect to the angle between 5 and k has no effect
on the discontinuity.
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