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We present a theory of the cholesteric blue phase, assuming a first-order cholesteric-
isotropic transition. We show, on the basis of the Oseen-Frank elasticity equations, that
the planar helix structures generally associated with the cholesteric phase, becomes un-
stable at temperatures near the transition point. It transforms into a phase characterized
by a network of disclination lines.

PACS numbers: 61.30.Cz, 64.70.Ew

In many cholesteric liquid crystals the transi-
tion between the regular helical cholesteric phase
and the isotropic phase occurs through one or
more intermediate phases. These are the choles-
teric "blue phases, "which are thermodynamically
stable over a narrow temperature range, often
less than I C. Recently, there has been a re-
newed interest in the study of the blue phases, ' '
largely stimulated by a theoretical explanation
for their existence by Brazovskii. "" From the
observation of Bragg reflections at visible wave-
lengths, '" it is now well established that at least
in some cases the blue phases have a structure
of cubic symmetry, with unit-cell dimensions of
the order of the cholesteric pitch.

Attempts at a theoretical treatment of the blue

phases" "have been based on Landau theory.
This theory predicts a phase in which the order
parameter is locally biaxial in large regions of
the unit cell of the cubic material. In addition,
the theory appears to be difficult to use in pre-
dicting more than one blue phase whereas experi-
mentally there are known to be up to three sepa-
rate phases. Moreover, the important parameter
of the theory for estimating when the predicted
phase is stable is Kq, '/l(~T/T, ) where K is a
typical elastic constant, q, is 2m divided by pitch,
I is the latent heat of the first-order transition,
and ~T=(T, —T,), with T, the extrapolated sec-
ond-order transition temperature and T, the first-
order transition temperature. This ratio is just
the elastic energy associated with the twist di-
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vided by the free energy difference of the two
phases at T,. Typically, this ratio is of order
0.2 whereas it needs to be -1.0 in the Brazovskii
theory. "

In the theory presented here we take the other
extreme position: We consider a first-order
transition of sufficient strength for the cholester-
ic phase to be adequately described by the con-
ventional director and scalar order parameter,
up to the isotropic transition. We can then base
the theory on the mell-known phenomenological
elastic equations for nematics and cholesterics
(the Oseen-Frank equations). We obtain the re-
markable result that the ordinary helical choles-
teric must become unstable at a temperature
near the isotropic transition, and transforms into
a structure characterized by a network of discli-
nations —presumably the blue phases. We esti-
mate that this occurs a few degrees below the
isotropic transition point, in accord with the typi-
cal temperature range of the blue phases of about
one degree.

We consider a model in which the blue-phase

structure is a lattice of disclinations. The core
of the disclinations is assumed to be isotropic,
while the material between them is in the choles-
teric phase. Various structures suggest them-
selves. One example is a body-centered-cubic
lattice with S= —

& disclinations along the body
diagonals of the unit cell." Another interesting
structure consists of two interpenetrating diamond
lattices of disclinations. We shall describe this
in more detail at the end of this Letter. Other
possibilities of course exist.

The crucial point we make here is that in a cho-
lesteric the free energy of such a disclination
structure will become lower than the energy of
the ordinary helical cholesteric structure, pro-
vided the temperature is near enough to the cho-
lesteric-isotropic transition. An alternative, and
somewhat paradoxical, way of formulating this
thesis is that, near enough the transition, the free
energy of a disclination will become negative.

To substantiate this claim, we begin with the
well-known expression of the elastic energy of a
cholesteric:

I', =

fdic'[

2E»(divn)'+ —,'E»(q+n curl n)'+ &E»(n && curl n)'].
Here the three terms represent the splay, twist,
and bend, respectively. However, if one peruses
the derivation of these equations, as, for instance,
given by Nehring and Saupe, "one finds that there
is an additional term"

F, =+ 2fdg(E»+E24)V [(n V)n —n(V n)]. (2)

The standard argument for dropping this term is
that it has the form of a divergence, and its in-
tegral over the sample can therefore be trans-
formed into a surface integral and consequently
neglected. For the proposed disclination model
of the blue phase, however, the integral must be
taken over the surface of the core of the disclina-
tions as well, and since the latter area increases
as the third power of the sample dimension the
standard argument fails. The calculation of the
contribution E, for an 8= —

& disclination is
straightforward: We integrate over the surface
of a cylinder surrounding the disclination. The
result is

F2 = —w(E22+ E,4) =——rE,

where F, is now the energy per unit length along
the disclination. (For simplicity we take E» =E»
=K„=E. Nehring and Saupe" show, on rather
general assumptions, that in this case E„=O,
and so E»+E„=E.) Note that the result (3) is

independent of the radius (so long a.s it is small
compared to the pitch}.

We now write the total energy of a cholesteric
with an 8 = ——,

' disclination as made up of the fol-
lowing terms":

F- F~ +F~mfa~+F2+I'& (4)

Finterface (6)

In contrast to the E, term, this energy is also
present in a nematic and its magnitude has been
estimated by Kahlweit and Ostner. " The values
given there show that it is probably of minor im-

We take all these terms per unit length along the
disclination.

The first term represents the excess free ener-
gy of the disclination core. For a first-order
cholesteric -iostropic transition, the free energy
is represented by two lines intersecting at the
transition temperature T,. Thus, for a tempera-
ture T near T, we write

=a(T, —T)mR',

where A is the radius of the core.
The second term represents a surface energy

at the interface between core and cholesteric. It
is characterized by a surface tension, 0; thus
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portance.
For the third term we adopt the expression (3).

There remains to estimate the F, term, which
represents the elastic energy in the cholesteric
phase. Its calculation for a specific cubic lattice
can only be done numerically. However, as a
rough estimate we use the expression for the
elastic energy for a nematic surrounding an S
= —

& disclination, given by de Gennes":

E, = g mKin(R~~„/R),

where 8,„ is a cutoff radius. Collecting all
terms we get

E = a( T, —T)mR'+ 2vmR —mR

(7)

+ —mK ln(R, „/R). (8)

The blue phase will be stable with respect to the
helical cholesteric when expression (8) becomes
negative. If, for simplicity, we take 0==0, the
minimum of. I' occurs for

R= [K/8a(T, —T)]"
Introducing this into (8), we find that E=O for

ln(R, „/R) =3.5 or R~,„/R =33.

For R „=1000A this gives R =30 A at the transi-
tion from cholesteric into blue phase. Note that
the core region is a small fraction of the total
volume (R/R, „)'=0.1U/c. The coefficient a can
be estimated from the latent heat of the choles-
teric-isotropic transition. We find" a =8&10
ergs deg ' cm '. Introducing this in (9), and us-
ing K =3 x10 ' dyne (near the transition tempera-
ture), we find for the transition temperature T,
—T=5'C, quite reasonable in view of the crude-
ness of the theory.

The treatment presented depends on the pres-
ence of the negative term, Eg. (2). For the bene-
fit of skeptics, it may be useful to make this
term plausible by presenting a simple physical
picture of its origin. It is well known that the
helicity of a cholesteric liquid crystal is due to
the presence of a screw sense in the individual
molecules. This will cause the molecules to
stack on the average at some finite angle, rather
than parallel as in a nematic. In the ordinary
cholesteric helix, the helical stacking is present
in the direction of the twist axis, but in the direc-
tion perpendicular to this axis the molecules are
constrained to parallel stacking. If helical stack-
ing could be achieved in both directions, the ener-
gy would be reduced. This is indeed the signifi-
cance of the E2 term in Eq. (2). However, be-

cause of the global requirements of topology, a
double twist cannot extend over a large volume
without generating singularities in the director
field. In the absence of singularities, I", must
therefore vanish, and this is the essence of the
traditional argument mentioned above. However,
there is no a Priori reason why the energy reduc-
tion achieved by local double twist cannot over-
come the energy cost of disclinations. This in-
deed occurs near the clearing point, where the
free-energy cost of disclinations tends to zero.

One means of constructing possible structures
for the blue phases is to interlace space with sets
of tubes, so constructed that the director points
along the tube axis in the center, and rotates
about the radial direction as one moves out, mak-
ing an angle of 45' on the surface of the tubes.
If, for example, sets of such tubes are placed
with their axes along three orthogonal directions,
so that mutually orthogonal tubes touch, but do
not intersect, we obtain a simple cubic structure
with a network of —~ disclinations that -form two
interpenetrating diamond-type lattices. Other
possibilities of course exist. The lattice parame-
ters and free energies of such structures can be
estimated numerically, allowing comparison with
experiment, but we do not attempt this here.
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