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Low-Temperature Specific-Heat Anomaly of a One-Dimensional Ionic Conductor
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We report measurements of the specific heat of the one-dimensional ionic conductor
hollandite for temperatures bebveen 0.07 and 3 K. An anomalous contribution is ob-
served which exhibits a pronounced peak unlike most disordered systems. The peak
height strongly depends on the concentration of the diffusirg ions. A theoretical inter-
pretation is given.

PACS numbers: 65.40.-f, 66.30.Dn, 66.30.Hs

Despite the large amount of work of the last
years' ' a microscopic description of the low-
temperature extra specific heat of amorphous ma-
terials has not yet been achieved. This problem
has received further interest from the measure-
ments of analogous effects in the ionic conductor
p-alumina. ' The phenomenological model consis-
tent with various observations (specific heat,
ultrasonic properties, ' etc. ) is based on the as-
sumption that certain atoms or groups of atoms
reside in a double-well potential giving rise to
two-level systems. " In addition, the occurrence
probability of various energy gaps has to be
smooth for small gaps in order to reproduce the
quasilinear behavior of the specific heat. The
main questions concern (a) a microscopic descrip-
tion of the tunneling "particle" between the two
levels; (b) the origin of very small gaps (=—1 K);
(c) the nature of the smooth distribution.

In order to elucidate these points one should
consider disordered systems for which micro-
scopic information about the structure is availa-
ble. In this respect the observation of anomalies
in ionic conductors similar to those of other
amorphous systems is of particular interest be-
cause these materials are rather well character-
ized microscopically. The basic model is that of
a periodic potential (due to the host lattice) whose
wells are partly filled by the interacting diffusing
ions. A very suitable substance in this respect is
the one-dimensional ionic conductor hollandite
(K»Mg&Ti, &O„with 0.75 (p(1). In this com-
pound the mobile K' ions reside in a periodic po-
tential which is substoichiometrically occupied,
and which does not communicate with neighboring
channels. Through the analysis of diffuse x-ray
scattering it was possible to obtain a good de-

scription of the state of order of the ions."Each
channel contains one site per unit cell along the
c axis and the fractional occupancy of these sites
with K' ions is equal to p. A very important role
is played by the ion-ion interaction within each
channel. Without this interaction the ions mould
be located at the local well minima. The ion-ion
interaction removes the degeneracy of the ener-
gies of different configurations and causes the
equilibrium position of the ions to shift from the
minima of the background potential. This situa-
tion can be described by the Frenkel-Kontorova
model with a finite density of defects. ' " The two
parameters of the model have been determined
for hollandite from the analysis of the structure
factor S(k).' We have therefore a precise formu-
lation of a problem of intermediate disorder, the
disorder being only that of the diffusing ions while
the cage ions are assumed to give rise to the
periodic potential. The configurational excita-
tions of this system have been studied in some
detail. " A configurational transition can be visu-
alized as the hop of an ion into an empty site in-
cluding the relaxation of all the other ions. The
tunneling particle is therefore the jumping ion
"dressed" with the relaxation of the other ones.
Previously it has been shown that it is possible
to obtain very lorn energy gaps for these excita-
tions but their energy spectrum is always dis-
n etc."" As a consequence the specific heat of
such a system is heavily structured; it consists
of a series of peaks at temperatures correspond-
ing to the characteristic energy gaps. As shown
in Ref. 11, for hollandite the most prominent
structure is expected to consist of a peak at T) 40'K. Unfortunately this contribution is com-
pletely masked by the relatively large and struc-
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tured phonon contribution to the specific heat of
hollandite in this temperature range.

To explore configurational contributions at low-
er temperatures we have measured the specific
heat of two hollandite samples with p, = 0.77
(+ 0.005) and p, = O. 78 at very low temperatures,
i.e. , between 0.07 and 3 K. The measurements
were made in a dilution refrigerator. The total
weight of the samples was about 100 mg each.
The specific heat C is plotted in Fig. 1 as a func-
tion of temperature. It differs markedly from the
behavior found in amorphous solids' ' and P-alu-
mina. ' In our case the specific heat first rises
much faster than linear and then at about 1 K ex-
hibits a broad peak. This is found for both con-
centrations. However the magnitude of the spe-
cific-heat peak for the two systems differs by
about a factor of 4. Such a striking dependence
on the ionic concentration calls for special atten-
tion. We discuss now the interpretation of the
observed anomalous specific heat in terms of the
above-mentioned model.

I.et us start by defining an array of length n as
a series of n consecutive wells occupied by ions
preceded and followed by empty wells. For high
density of ions (p ) 0.75) we can neglect the oc-
currence of two (or more) empty wells adjacent
to each other. ' A configuration is then specified
by the set of array lengths fnj. For example the
configuration (n) =4;3; 3; indicates that we
have a vacancy, then four occupied wells, a vac-
ancy, three occupied wells, a vacancy, three
occupied wells, etc. In Ref. 9 it has been shown
that the total static energy of a given configura-
tion (including of course the ionic relaxation in
each well due to the ion-ion interaction) can con-
veniently be written in terms of a spin-type Ham-
iltonian with an effectiue long range in-teraction
acting only between emPty sites:

V= Q C(n+) o, o, , ; C(n+) = Zn" +,

where 8 and n((1) are related to the original
parameters of the model (see Refs. 11 and 12).
The variable 0& assumes the value 0 or 1 if the
jth site is, respectively, occupied or empty and
n* is the total number of occupied sites between
the sites j and j'. The sum extends to all pairs
of holes.

Numerical studies on a finite ring" with a den-
sity p= —,

' and using parameters appropriate to
hollandite show a structure in the configurational
specific heat at T = 40 K due to transitions of
type 4 4 ~ ~ —. ~ ~ 3. 5. ~ . . The eharacteris-
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FIG. 1. Measured specific heat for two hollandite
samples with slightly different ionic concentrations.
The theoretical curves are computed as discussed in
the text and with the parameters Cl = 0.74 eV (B,ef. 9)
and Jp = 0 30 eV. The peak positions and the change of
intensity as a function of concentration are in good
agreement with the measured values. Only the total
intensity was scaled because of the effect of blocking
impurities.

o ~ ~ ~ 4~ 3~ 4~ 3~ ~ ~ ~ ~ ~ ~ ~ ~ 4~ 4~ 3~ 3~ ~ o ~

has a characteristic gap

6, = C(6) + C(8) —2C(6) = n'b, , (4)

which, since n —= 0.3,""is about 40 times small-
er than 6, and gives rise to a specific-heat peak
at T-1-2'K. It was not possible to detect these
small gaps in Ref. 11 because of the small size of
the system considered there. An a,nalytical study

tic gap between these two configurations can be
estimated from Eq. (1) by limiting the interaction
to the nearest holes".

a, =—C(3) + C(5) —2C(4) = Jn'(n+ 1/n —2). (2)

For pairs of states that are degenerate with re-
spect to the interaction between nearest holes,
such as ~ ~ - 3 4 ~ ~ — ~ ~ 4 3. we have to9 9 9'

specify the configurations in more detail. Includ-
ing the interaction up to second nearest holes, a
transition like
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of the thermodynamics of infinite systems that is
able to take into account these fine effects has
been described in Ref. 12. The theoretical curves
shown in Figs. 1 and 2 are computed with this
method. The parameters used are based on the
analysis of S(k) at room temperature. ' The only
change, to optimize the agreement with experi-
ments in Fig. I, is in the value of Ja (barrier
height of the background potential) from 0.23 to
0.30 eV. In fact, because of anharmonicity, we
can expect that the apparent force constant (re-
lated in our model to J,) is larger at lower tem-
peratures.

In order to understand the strong concentration
dependence of the specific heat we have to look at
the transitions that give rise to the peak [Eq. (3)].
It is easy to see that the probability of having in
the ground state a series of values like the start-
ing configuration of Eq. (3)(;4; 3; 4; 3; ) is
maximum if the arrays with n = 3 and n = 4 appear
with equal probability. According to this simple
argument the maximum peak height for the specif-
ic heat corresponds then to (n) =3.5 [p=(n) /
((n)+ I) =0.77] while the intensity goes to zero for
(n) = 3(p = 0.75) and (n) = 4(p = 0.80). These quali-
tative considerations are confirmed by the theo-
retical curve" reported in Fig. 2 which explains
very well the peak height difference between the
two samples. The sharpness of the curve in Fig.
2 indicates that the probability distribution for
the position of various arrays is not random but

quasiorde red.
A problem arises in the comparison of the abso-

lute magnitude between the measured peak height
and the theoretical one. In Fig. 1 we have simply
scaled the absolute peak height, but the computed
one is actually much larger than the experimental
one. This is due to the fact that in the theory we
treat the system as an infinitely long chain while
we know that the actual samples contain a high
density of blocking impurities" so that the real
system is essentially a collection of separate
segments of various lengths. A transition of the
type described by Eq. (3) remains quasidegener-
ate and produces the low-temperature specific
heat contribution only if a segment of about 30
wells (including ionic relaxation) is free of these
blocking defects. This implies that only those
segments that have a length of at least 30 wells
can contribute to the specific-heat peak at -1 K.
The inclusion of this effect drastically reduces
the theoretical peak height and we recover the
experimental peak height if we assume the aver-
age separation between blocking barriers to be
about ten lattice sites. This assumption is in
quantitative agreement with the conductivity da-
ta."

In summary we believe this is the first time
that the low-temperature specific heat anomalies
of a disordered system have been analyzed in
terms of a micxoscoPic model. In agreement
with the theoretical. results the experiments con-
firm that the disorder due to diffusion (interact-
ing) ions in an otherwise periodic potential can
give rise to very low energy gaps for configura-
tional excitations but not to a smooth distribution
of these energies. From preliminary calculations
we think this to be the case also in higher dimen-
sions so that the quasilinear specific heat ob-
served in P -alumina ha. s to be linked to additional
sources of disorder such as, for example, that
due to the compensating ions. A similar effect is
probably the cause of the smooth background
structure that seems to be present in the hollan-
dite data in addition to the peak and that is most
visible near 0.1 K.
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FIG. 2. Magnitude of the computed low-temperature
specific-heat peak height as a function of the ionic
concentration. As expected from the arguments re-
ported in the text, the maximum is at (n) = 3.5 (p
= 0.77) and the intensity goes to zero for the bvo "com-
mensurate" cases (n) = 3 (p = 0.75) and (n) = 4 (p
= 0.80).
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We present a theory of the cholesteric blue phase, assuming a first-order cholesteric-
isotropic transition. We show, on the basis of the Oseen-Frank elasticity equations, that
the planar helix structures generally associated with the cholesteric phase, becomes un-
stable at temperatures near the transition point. It transforms into a phase characterized
by a network of disclination lines.

PACS numbers: 61.30.Cz, 64.70.Ew

In many cholesteric liquid crystals the transi-
tion between the regular helical cholesteric phase
and the isotropic phase occurs through one or
more intermediate phases. These are the choles-
teric "blue phases, "which are thermodynamically
stable over a narrow temperature range, often
less than I C. Recently, there has been a re-
newed interest in the study of the blue phases, ' '
largely stimulated by a theoretical explanation
for their existence by Brazovskii. "" From the
observation of Bragg reflections at visible wave-
lengths, '" it is now well established that at least
in some cases the blue phases have a structure
of cubic symmetry, with unit-cell dimensions of
the order of the cholesteric pitch.

Attempts at a theoretical treatment of the blue

phases" "have been based on Landau theory.
This theory predicts a phase in which the order
parameter is locally biaxial in large regions of
the unit cell of the cubic material. In addition,
the theory appears to be difficult to use in pre-
dicting more than one blue phase whereas experi-
mentally there are known to be up to three sepa-
rate phases. Moreover, the important parameter
of the theory for estimating when the predicted
phase is stable is Kq, '/l(~T/T, ) where K is a
typical elastic constant, q, is 2m divided by pitch,
I is the latent heat of the first-order transition,
and ~T=(T, —T,), with T, the extrapolated sec-
ond-order transition temperature and T, the first-
order transition temperature. This ratio is just
the elastic energy associated with the twist di-
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