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It is shown by a calculation analogous to that carried out by Wallace and Zia for the pure
Ising model that the lower critical dimension of the Ising model in a random field is 3 and
not 2 as suggested by domain energy arguments. Further, the critical dimension for the
roughening transition is shown to be 5 as compared to 3 for the pure Ising model.

PACS numbers: 05.50.+q, 05.70.Fh, 75.10.Hk, 75.50.Kj

In a recent letter Wallace and Zia' have argued
that capillary waves which describe large dis-
tance deviations from planar of an essentially
sharp interface can be interpreted as the Gold-
stone modes whose fluctuations lower the critical
temperature to zero as d =1*, The capillary in-
terface waves therefore play the same role for a
system with discrete symmetry as spin waves for
a system with continuous internal symmetry. A
renormalization-group calculation was carried
out ind=1+ € with T,~ €, showing that the lower
critical dimension is 1 for the discrete Ising mod-
el.

In this Letter the effect of adding a random field
to this model is studied. The lower critical di-
mension is found to be 3, and the results of a d
=3+ € calculation are presented. Further, we
show that the roughening transition predicted to
take place for d =3 for the pure Ising model® is
shifted to d=5. Thus the interface is rough below
the ordering temperature for 3<d<5.

These results are in agreement with a recent
letter by Parisi and Sourlas,® who argue on very
general grounds that for all properties the rele-
vant dimension for the random-field model should
increase by 2 as compared with the corresponding
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property of the pure Ising model. A lower criti-
cal dimension of 3 is in apparent disagreement
with 7=0 domain energy arguments* which yield
a domain instability below d =2. This has gener-
ally been interpreted as a lower critical dimen-
sion of 2. However, such an instability provides
only a lower bound on the lower critical dimen-
sion. In fact, qualitative arguments® suggest that
considering the domain-wall f7ee energy strength-
ens the instability and moves the lower critical
dimension to d =3.

The predicted lack of long-range order for d=3
is consistent with recent experimental studies® of
disordered GdAlO, whose antiferromagnetic to
paramagnetic transition in a uniform field is sim-
ilar to that of the Ising model in a random field.*”
It is also in agreement with the results® on Fe _ - -
Co,Cl, where the smearing of the transition of
one of the order parameters may be due to effec-
tive random fields associated with the other order
parameter.® However, other interpretations are
also possible.®

The rather common situation of a first-order
transition in a system with quenched “7.” im-
purities!® is similar to the transition in the ran-
dom-field Ising model as a function of a uniform
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magnetic field below the critical temperature.'®
Thus, our results imply that first-order transi-
tions should always be smeared in impure three-
dimensional (3D) systems, if the impurities can
be regarded as “quenched.” Moreover, for d=3
(<5), such systems should display a substantial
interface roughening. In fact, for an interface of
linear dimension L an effective interface fluctua-
tion of O(L) and proportional’! to the square root
of the impurity concentration is predicted. This
impurity -induced interface roughness should be
observable.

Various models have been used to describe the
interface of spin-up and spin-down domains of the
discrete Ising model. Some of these will be dis-
cussed below and then generalized to include the
effect of the random field.

The capillary-wave approach used by Wallace
and Zia' gives rise to a reduced Hamiltonian for
a field f which describes the deviation of a sharp
interface from planar,

5e(f) =T a4 {1+ (v )?)2 + $mr2). (1)

The first term is the surface area of the inter-
face. The coefficient 77! represents o/k 7,
where 0 is the interfacial energy per unit area at
zero temperature. The mass term represents a
pinning potential such as gravity for the liquid-
solid interface or a step function magnetic field
for the discrete Ising model. This model gives
rise to an infinite interface width!? in the limit
m =0 for d <3. For the 2D Ising model this is in
agreement with rigorous calculations,'® whereas
the 3D Ising model has a finite interface width at
low temperatures.'* In 3D the discreteness of the
lattice gives rise to a finite interface width below
a roughening transition tempersture Tr. For Ty
<T <T,the width is again infinite, as in the con-
tinuum models using capillary waves. For d>3,
Tg=T, and the interface width diverges as T
—_ Tc'ls' 16

The roughening transition has been described
by various solid-on-solid models.? A simple
such model is the discrete Gaussian (DG) model
introduced by Chui and Weeks*'” in which the in-
teraction between nearest-neighbor columns is
quadratic in the height difference,

J J e s
HDG:E;_‘_B,(hj-h“é)zsi?’th G, i ge, (2)
s El

where G™'(q) ~¢®+ O(q*) and where %, are integers.
Following Chui and Weeks*!7 the partition func-

tion may be written Zp; =2Z,Z ., where Z; is the

partition function of the continuous Gaussian mod-

1174

el, equivalent to the capillary-wave approxima-
tion, and can be evaluated exactly, and where Z.
is the partition function of the neutral Coulomb
gas,

©

Zc= 2

W exo|- S DR GUN | ()
in which k; represents the charges. Note the g2
dependence of G(q) at small ¢ which characterizes
the Coulomb interaction. In this way the roughen-
ing transition has been related to the metal-insu-
lator transition of the Coulomb gas, which is in
turn related to the Kosterlitz-Thouless transition
in the planar XY model,'%!?

The reduced temperature 2;7/J has been invert-
ed in going from the DG model to the Coulomb
gas. Thus while in the XY model the spin-wave
excitations persist'® (although with renormalized
stiffness) in the presence of the bound vortex-
antivortex pairs for 7< Tkr, the gapless capillary
waves persist in the presence of the discrete lat-
tice (Coulomb gas) for 7> T,. Because the inter-
face has dimension d -1, a finite nonzero value
of T is thus obtained for the 3D Ising model. For
d>3, Tg=T, while for d<3, T;=0.2° Thus for
d <3 the capillary wave approximation should be
applicable for 7=0. It was used, in the form
given by Eq. (1), by Wallace and Zia in their re-
normalization-group calculation in 1 + € dimen-
sions.

Wallace and Zia did not establish a rigorous
connection between the transition obtained from
the model, Eq. (1), in terms of the interface vari-
able f and the transition of the underlying Ising
model. However, from their interface model they
find that the surface tension vanishes for 77— 17,
in the way predicted by the scaling law for the
Ising model,’® and in agreement with exact results
for the 2D Ising model.?":22 Further, their re-
sults for the correlation length of the 1D Ising
model agree with exact results. This supports
the identification of T, as obtained from the inter-
face model Eq. (1) with the 7, of the Ising model.
For the 2D Ising model this connection has been
made more explicit by Einhorn and Savit.?® They
show that the phase transition corresponds to a
condensation of the domain boundaries. More
generally, in the paramagnetic phase of the Ising
model just above T,, clusters with sizes compar-
able to the correlation length £ are expected to
exist., This agrees with having the ff correlation
function of the interface decay over a length &.

Still another approach used to describe the in-
terface starts from the Landau-Ginzburg-Wilson
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free-energy functional,’®
3C(s) =fd"x[ 3(Vs)2+ z7s®+us] . (4)

Following Ref. 16, we set s(x)=M(x) + o(x), where
M(x) is at this stage arbitrary. The free energy
is a functional of M(x)

F[M(x)]= = kyTInTr e M+, (5)

If o{x) is restricted such that (o(x)),=0, the equa-
tion of state follows from 6F/6M(x)=0. If fluc-
tuations involving ¢ are neglected, the Landau-
Ginzburg equation is recovered, — VZM+vM
+4uM® =0, with solution M (2) + (- r/4u4)*? tanh(- %
x#)"2z | for which variation is assumed in only
one direction. Inclusion of quadratic fluctuations
about this solution gives

The eigenvalues and eigenvectors of this effective
Hamiltonian are obtained from the differential
equation, — V2¢+ v+ 12uM *(2)yP=2ry. All the
eigenvalues A,(q, p) and eigenfunctions «,(q, p) of
this equation are known. Here g is a (d - 1)-di-
mensional wave vector associated with the trans-
verse degrees of freedom and p is a scalar varia-
ble associated with z. If we keep only the lowest
eigenvalue of the z motion, which is gapless and
proportional to ¢%, we recover the capillary-wave
approximation (or continuous Gaussian model)
discussed above.

This last approach is readily generalized to in-
clude the effect of the random field with the help
of the replica method. We add a random field to
the effective Hamiltonian [ Eq. (4)], replicate the
partition function, and average over the random

g - d,[1 2, 10216 2 27, 6
¥(o) fd #z(V0 +270%+ 6ubd,(2)°] ( )| field to obtain a new effective Hamiltonian,
3C[S]=fd"x{2[ %(Vsa)z“‘“ %ysaz +uso¢4]— %A. E saSB}; (7)
a o,B

where we have assumed a Gaussian distribution of width &, and where a and $ are replica indices.
We set s(x)=M(x)+0,(x), where (0,),=0. M is independent of the replica and is given by the same
expression as for the pure case. The quadratic fluctuations about this solution now take the form

% [o]= Jax{D [ (V0o )+ 1702 + 6uM2(2)0 2] - gzzﬂ 00} (8)

For A=0, this Hamiltonian can be diagonalized as before,

se=[aq dP{Eal,.(P, a4, 2),*(~q, =p) - %Bzg%(lx 9)05(-4, -p)}. (9)

The original fluctuations o, can be expressed as linear combinations of the »,* with coefficients f,*(p,
q). Thus finally, keeping only the lowest-lying mode in the effective Hamiltonian gives,242°

se=Jd*q[g* > £ (@) F(~q) - & FACACTE

(10)

Analogously, in the presence of a random field the model of Wallace and Zia, Eq. (1), is generalized

t024, 25

5 =17 a4 (DAL (T2 3 mt (7 = (A/ TV /°7)

while the discrete Gaussian model takes the form?2* |

ZDG

=fHd[hj°‘]H W(hj“)exp{--kiBT CZCDG} (12)

o

- J R A”
3CDG:EZ> lhqalzc l(q)—kBT Eﬁkqah“qﬁ)
a,a Py

W(h;*)= 25 exp(ik,“h;%).

kj(x:-oo

As for the pure case we can write Z :'ZOZC

(11)
where now,
— = | "kBT a~aB(y » B

ZC— Z) exp ZJ Ekz G (zyj)kj (13)

[kia]='°° i4d

a,B

9 A7 1
Corl0) (S5 )

Because of the presence of the 1/¢* term, a loga-
rithmic interaction between the charges &, is
now obtained in four interface dimensions (five
for the underlying Ising model) rather than in two
(three) for the pure case where A” now plays the
role of temperature. The classical logarithmic
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gas undergoes an infinite-order transition in any
dimension.?® Thus in the presence of a random
field there is a roughening transition as a func-
tion of A at a critical dimension which changes
from 3 for the pure Ising model to 5 for the ran-
dom-field Ising model. That is Ap=0 for d <5,
Agp=A,for d>5, and 0 <Az <A, for d=5. Thus
for the random-field model the capillary-wave

approximation should be applicable at low temper-

atures for d <5. This approximation as expressed
in Eq. (11) will be used in a renormalization-
group calculation in d = 3 +€ dimensions. This
calculation is closely analogous to the d =1 +¢
calculation of Wallace and Zia. However, again
the transition occurs as a function of A. We find
A cce for d=3+e. From Eq. (11), the propagator
takes the form

{(fal@)fela’)
=6(+q" (T /q%)d45+2/q*].

Again the 1/¢* term shifts the relevant dimen-
sion by 2. The recursion relations are given by?®

dAQ)/dl=—-(d - 3)A(Q) +7~a%(),
dT(1)/dl==@d-1T ) +z77*a(l)T(1),

with the fixed points (a) T*=0, A*=0; and (b) T*
=0, A*=71(d - 3). Linearizing the recursion rela-
tions about the fixed point (b) determines the ex-
ponent v, 1/v=x,=€. Thus for d=3, v=e, and
the correlation length diverges as e/%, as A~ 0
(A,=0,d=3). If we define A,=A — A, where A,
=me, the free energy satisfies the scaling law
F(T,A,)~A,4"DYF(T), such that d-2)v=2 -4,
when @ is the exponent of 8°F/8A,°, Thus for the
transition in the A variable once again the scal-
ing law is changed by d -d — 2. If instead of A

— A,(T) we consider T =T ,(A), the same critical
exponents are expected.

To summarize, by extending recent calcula-
tions for the pure Ising model to include the ef-
fect of a random field, we have shown that the
lower critical dimension and the critical dimen-
sion for the roughening transition are both shift-
ed by 2, as compared with the pure Ising model.
In particular, the 3D random-field Ising model
is found to be disordered at all temperatures, ex-
cept at T=0, with a correlation length diverging
as el/A, as A—0. As a corollary, first-order
transitions with quenched 7, impurities should
exhibit smearing in three dimensions. The inter-
faces for quasi phase equilibrium (which exist
only for finite clusters) in such systems should
show a substantial roughness.

(14)

(15)

1176

Discussions with A. Aharony, R. Birgeneau,
R. Cowley, G. Grinstein, P. Horn, C. Jayapra-
kash, R. Pelcovits, J. Rudnick, and W. Wolf are
gratefully acknowledged.

®)on leave from Tel Aviv University, Ramat-Aviv,
Israel.

®)on leave from Weizmann Institute of Science, Re~
hovot, Israel.

'D. J. Wallace and R. K. P. Zia, Phys. Rev. Lett. 43,
808 (1979).

’For a review see, for example, J. D. Weeks, in
Ovrdeving in Stvongly Fluctuating Condensed Matter
Systems, edited by T. Riste (Plenum, New York,
1980), p. 293, and references listed therein.

’G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744
(1979).

4Y. Imry and S.-k Ma, Phys. Rev. Lett. 35, 1399
(1975).

K. Binder, Y. Imry, and E. Pytte, unpublished.

®H. Rohrer and H. J. Scheel, Phys. Rev. Lett. 44,
876 (1980).

’S. Fishman and A. Aharony, J. Phys. C 12, L729
(1979).

8po-zen Wong, P. M. Horn, R. J. Birgeneau, C. R.
Safinya, and G. Shirane, Phys. Rev. Lett. 45, 1974
(1980).

'D. Mukamel, Phys. Rev. Lett. 46, 845 (1981).

Y. Imry and M. Wortis, Phys. Rev. B 19, 3580
(1980).

""The rms fluctuations in the interface width go like
A2 [from Eq. (14)]. In the simplest model A is pro-
portional to the impurity concentration.

2F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys.
Rev. Lett. 15, 621 (1965).

3g. Gallavotti, Commun. Math. Phys. 27, 103 (1972).

YR, L. Dobrushin, Theory Probab. Its Appl. (USSR)
17, 619 (1972); H. van Beijern, Commun. Math. Phys.
40, 1 (1975).

by, Widom, in Phase Tvansitions and Critical Pheno -
mena, edited by C. Domb and M. S. Green (Academic,
New York, 1972).

167, Rudnick and D. Jasnow, Phys. Rev. B 17, 1351
(1978); T. Ohta and K. Kawasaki, Prog. Theor. Phys.
58, 467 (1977).

S, T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978
(1976).

'8J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6,
118 (1973).

19, M. Kosterlitz, J. Phys. C 7, 1042 (1974).

20T hat T, =0 for the 2D Ising model has been shown
rigorously by Gallavotti, Ref. 13.

211, Onsager, Phys. Rev. 65, 117 (1944).

M. E. Fisher and A. E. Ferdinand, Phys. Rev. Lett.
19, 169 (1967). :

M. B. Einhorn and R. Savit, Nucl. Phys. B170, 16
(1980).

UX, A, A, and A are proportional to the width of the
random-field distribution but are scaled differently for



VOLUME 46, NUMBER 18

PHYSICAL REVIEW LETTERS

4 MaAy 1981

the different models discussed. Thus A is measured in
units of J2, A" « J %A, ete.

%This procedure gives the correct quadratic Hamil-
tonian in the physically relevant limit » — 0 (# is the
replica index). An alternate derivation yields the cor-
rect translationally invariant form A(f, —f3)* as well
as higher-order terms proportional to A such as (f,
—f)t, (Vf)Hfo ~fg)?, etc. These terms would be
difficult to derive by the procedure used here. All the

eigenvalues and eigenvectors of Eq. (6) would have to
be taken into account. However, these terms can be
shown to be irrelevant, in the renormalization group
sense, and will not be included here. The details of
the derivation and of the renormalization group calcu-
lation will be presented elsewhere (D. Mukamel,
Y. Imry, and E. Pytte, to be published).

*%see, for example, discussion in G. Grinstein, Phys.
Rev. B (to be published).
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The total—cross-section difference in pure longitudinal spin states for p-d interactions
has been measured at momenta from 1.1 to 6 GeV/c. Spin-dependent Glauber-type cor-
rections and other corrections have been made to obtain Ao, (pn) and Ao, I =0). These
measurements are of fundamental interest and will also help in determining the existence

and nature of dibaryon resonances.

PACS numbers: 13.75.Cs, 21.30.+y

We have measured the total-cross-section dif-
ference in pure longitudinal spin states for pro-
ton-neutron interactions [Ao,(pn)] at eleven mo-
menta from 1.1to 6.0 GeV/c. A polarized proton
beam and polarized deuteron target were em-
ployed because polarized neutron beams of the
required intensity and energy are not easily pro-
duced. These measurements were made at the
Argonne National Laboratory zero-gradient syn-
chrotron (ZGS) by the group that made previous
similar measurements for proton-proton interac-
tions in pure longitudinal spin states.

The strong energy dependence in Ao (pp) data,’
together with data on the transverse-spin-state
cross-section difference Ao, (pp),? polarization
and various two- and three-spin parameters in
elastic scattering, some inelastic channels in nu-
cleon-nucleon interactions, and n-d and p-He
scattering, have led to interpretations in terms of
dibaryon resonances.®”” Further measurements
in the elastic and inelastic channels are underway
at Clinton P. Anderson Meson Physics Facility,
TRIUMF, Schweizerisches Institut fur Nuklear-
forschung, and other laboratories, and data tak-
en at the ZGS by our group and others are being
analyzed.

There are several approaches to nucleon and

subnucleon physics for which total nucleon cross
sections in both pure spin states and pure isospin
states are of fundamental interest. These include
determining nucleon-nucleon scattering ampli-
tudes, gaining information on particular exchang-
es in the nucleon-nucleon force and on nucleon-
nucleon couplings to nucleon-isobar or isobar-
isobar channels, and studying possible multiplets
of multiquark resonances in order to learn about
the constituent interactions.

The existence of isospin-1 dibaryons would sug-
gest the existence of isospin-0 dibaryon states
and indeed some bag models and other approach-
es predict many such states.® The isospin-0 chan-
nel is of particular interest also because this
channel cannot couple to NA or 7D channels which
have been discussed in connection with the inter-
pretation of the pp (I =1) case near threshold.®
Furthermore the thresholds for NN*(1400) and
AA(1236) are higher than 1.5 GeV/c (1.7 and 2.1
GeV/c, respectively).

The beam arrangement and general features of
the transmission counters and target used for the
first running period have been described previ-
ously.“® A 3He-%He dilution refrigerator was
used for the target during the second running pe-
riod. The target NMR system could record both
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