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Double Layers without Current
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The steady-state solution of the nonlinear Vlasov-Poisson equations is reduced to a non-
linear eigenvalue problem for the case of double-layer (potential-drop) boundary conditions.
Solutions with no relative electron-ion drifts are found. The kinetic stability is discussed.
Suggestions for creating these states in experiments and computer simulations are offered.

PACS numbers: 52.25.-b

Both laboratory experiments!™® and space-plas-
ma observations® ® have shown that plasmas can
develop states which have a narrow, isolated re-
gion of rapid potential change surrounded by large
regions of effectively uniform plasma potential.
Such states are called double layers because of
the dipole-sheet nature of the space-charge dis-
tribution required. Theoretical models!* 7" ® of
double layers have generally appeared to require
a relative electron-ion drift (i.e., a plasma cur-
rent), but recently computer stimulations!® and
studies of thermal-barrier cells in tandem mir-
ror devices* 2 have found states with abrupt po-
tential drops with little or no plasma current.
Currentless double layers have a particular sig-
nificance for two reasons: (1) Their E -7 energy
dissipation vanishes so that no external energy
source is required to maintain them; and (2) in
contrast to collisionless shocks,'® they involve no
mass flow and, hence, no supply of streaming
plasma is necessary. A currentless solitary-
wave solution has recently been found by Hasega-
wa and Sato.*

The goal of this Letter is to find solutions to
the Vlasov-Poisson equations which exhibit the
following properties: (1) An isolated region of
abrupt potential change exists surrounded by re-
gions where the plasma is quasineutral and the
potential is constant, (2) On the high-density side
of the potential change, the plasma has Maxwell-
ian velocity distributions for both ions and elec-
trons although the respective temperatures may
be different. (3) On the low-density side, the
electron velocity distribution remains Maxwell-
ian while the ion distribution is composed of coun-
terstreaming ion beams. There is no net cur-
rent. (4) The potential decreases from the high-
density to the low-density side.

The key to obtaining these solutions is to rec-
ognize that electrostatically trapped ions can
exist on the low-density, low-potential side. We
will regard the density of these trapped ions to
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be an adjustable parameter which, together with
the magnitude of the potential drop, provides us
with two parameters which are sufficient to sat-
isfy the two criteria for a double-layer solution:
That the low-density side be quasineutral and
that the total charge in the double layer be zero.
Hence, the trapped-ion density and the potential
drop are the two components of a nonlinear, two-
component eigenvalue problem which determines
the double-layer solution.

Our model is that of a one-dimensional Vlasov-
Poisson plasma, and we shall define a nondimen-
sional potential ¢ related to the conventional po-
tential by

Zp:"'e(P/Te’ (1)

and choose that y =0 level to be on the high-densi-
ty side. Hence, ¢ will be positive and monotonic-
ally increasing. The steady-state Vlasov equa-
tion is solved by any function of energy. We as-
sume the electron distribution function is Max-
wellian everywhere. Our model for the ion dis-
tribution functions f is

9T \ 172 -€ _
<TT,> L=h___{e , €>=A @)
M Rg 0, e<-a,
where
€ =pMv3/2r; -y1, T=T,/T;. (3)

The positive parameter A governs the density of
electrostatically trapped ions (those with € <0).
The electron and ion densities can then be ex-
pressed as

ne =nge”?, @)

ni =108, A)=n, [, hln(e +ym)] e,
and the Poisson equation is

0%Y/0E% =g(y,A) ~ eV =G(y,A), (5)
where & =x/xp and A= (1',/4mn4e?)t’? is the Debye
length. Evaluation of the integral in Eq. (4) leads
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to

o _J)evT, dT<A
g(®,4) _{ew‘" érfc[(zp*r —A)2] YT A, (6)

Double-layer solutions to Eq. (5) can occur if
the net charge density vanishes as §{ -~ +~, Our
assumption that -0 as £ = — < is consistent with
this condition. This requirement, combined with

the asymptotic dependence y—~i, as § -+ <, leads
to the equation

(Yo, A) —exp(- Z»‘,’0) = G(%, A) =0, (7)

as one of the two nonlinear equations relating the
potential change ¥, and A,

The electric field must also vanish as £ -+,
Multiplying Eq. (5) by 8¢/0¢ and integrating, we
find

(ey/08).2 - (8y/0) .2 =2 [}yl g, ) - e7¥] =2 [ °ayG(y) =V (3,,4) =0, (8)

Integration by parts simplifies Eq. (8) to read

7 Yexp(,7) erfel (Vor — A)2] + (2/V) (T ~ 8)H2e? ~ 1} —1 + exp(y,) =0,

which is the second equation relating ¥, and A,
Equations (7) and (8) are the nonlinear equations
for the two-component eigenvalue (¢,,A). Figure
1 presents solutions of these equations for a
range of values of the electron- to ion-tempera-
ture ratio 7. We note that in addition to the po-
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FIG. 1. (a), (b) Solutions of the nonlinear eigenvalue
problem. Note that A/7 is quite constant. (c) The
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stability functions S, and S, [Eq. (13)].
stability,

S$<0 represents
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tential change, these double layers have a dis-
tinct density change An/ny=1 - exp(-y,).
Equations (7) and (8) coupled with the condition

v(,a)=2f e, A)ay'=0, 0<y<y,  (9)

represent both necessary and sufficient conditions
for the existence of a double-layer solution. Ne-
cessity follows from the arguments directly pre-
ceding Egs. (7) and (8). Sufficiency will be dem-
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FIG. 2. Electron and ion densities as a function of
potential for =1, Curve « is the electron density e ¥,
Curve p is the ion density g@,A) [Eq. (6)]. Curve c is
the difference G(¥,s) and depicts regions of positive
and negative charge density. Dashed curve d would be
the ion density if A =0. It is evident that the required
region of positive charge density cannot exist for A=0,
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onstrated by construction. The integral
v 7k ’ - =
Jou VIV @, 8) 2=t~
64"1$ (ps Zpo - 5¢2,

provides the relation between ¢ and £ given that
Y =06y, at £ =£,. The end points must be treated
specially because the integral formally diverges
there. The quantities 8¢, and 6y, can be taken
arbitrarily small, so that a Taylor expansion of
G is possible. Hence, near ¢ =0, V=G'¢? and the
integral

(10)

[P Hen eay/p =k, - (11)
provides the relation
¢ =09, expl(G")2(E - £ )], (12)

which shows that the solution exponentially de-
cays to zero as £ - — e, Similar arguments yield
an exponentially decaying approach to ¢, as  — +=.
These arguments coupled with the convergent in-
tegral in Eq. (10) show that a solution can be ex-
plicitly constructed. Figure 2 shows representa-
tive quantities. We note that if there were no
trapped ions, then it would be impossible to sat-
isfy Eq. (9).

The two-component eigenvalue is composed of
the potential change ¢, plus an additional compo-
nent (in our case A) which permits a variation of |

s"}_ 1.00

= p - -1/2 _ -
So 1.28}XTeXp(Z’”°+A)[7T(¢oT A)] 7T-1<0,

the plasma distribution function. Thus, in gener-
al, a double layer cannot occur because the plas-
ma will not have the correct value of A, How-
ever, a plasma distribution function may vary
slowly in space (compared with a Debye length)
as a result of changes in mirror ratio, for ex-
ample. It follows that these slow spatial varia-
tions permit a parameter like A to assume the
correct value at one point in space which is where
the double layer will occur. Hence, the physical
interpretation of the two-component eigenvalue
problem is that one component determines the po-
tential change, while the second component deter -
mines the point where the double layer occurs.
Double layers must be stable to exist. Clearly,
the solution given here is stable to waves in the
electron—-plasma-frequency range because the
electron velocity distribution is Maxwellian every-
where. On the low-density side, the stability
situation is that of counterstreaming ion beams,®" 17
We shall confine our attention to electrostatic
stability criteria. When the model of a magnetic-
field—free plasma is appropriate, zero-frequency
modes of the ion-acoustic branch are most un-
stable.’® A linear stability analysis'® yields sta-
bility functions for both parallel propagating
modes S, and obliquely propagating modes S, at
the maximally unstable angle 6, determined from
tand ,=(0.66)(y,7 — A)Y2, The stability criteria
are

(13)

Figure 1(c) shows that solutions are stable to l
parallel propagating modes for all 7 and to oblique
modes for 7<0.8. We conjecture that there exist
other distribution functions without the abrupt en-
ergy cutoff which are stable for larger 7 values.

If the potential drop occurs along a magnetic
field, then we must address the question of sta-
bility with respect to electrostatic ion-cyclotron
waves. Theory,'®'” experiment,'” and space ob-
servations’ have shown that instabilities occur
in this situation. An analysis shows that purely
growing modes are unstable for distribution func-
tion Eq. (2), but that this conclusion again de-
pends on the abrupt energy cutoff.

While the dynamics of the formation of a double
layer are outside the scope of this Letter, cur-
rentless double layers are consistent with the
presence of a negatively biased, transparent
grid. This can be seen by extending the definition

of V to higher values of ¢ so that

V(¢g.A)=Zf:g dy G(y) >0, (14)

o
(alp/aﬁ)wg:)\D@E/T:—)kDeOs/2T

=[V(y,, A)]V2, (15)

where 0 is the (negative) surface charge density
of a grid at potential ¢,=-y, T,/e. Hence, the
introduction of a negatively charged grid in an
otherwise symmetric plasma device such as a
triple-plasma device' or magnetic mirror could
lead to the formation of a currentless double lay-
er. The computational simulation analogy is the
gradual buildup of a fixed, negative charge sheet.
Double layers will also arise in magnetic mir-
rors for the class of particle distributions such
that the quasineutrality condition #,(¢, B) =n (¢, B)
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yields a nonmonotonic relation between ¢ and B.
Examples are found in tandem-mirror' and mag-
netospheric® research. Inthese circumstances,
¢ is a multiple-valued function of B, and a simple
generalization of (8),

V(B):j.qé([’) [ne((P) B) "”i(‘P’B)]d<P:0,

¢1(B)
determines the value of B where an abrupt (Debye-
length scale) double-layer transition between two
solutions ¢,(B) and ¢,(B) of the quasineutrality
equation occurs. A generalization of (9) must
also be observed.

In closing, it should be pointed out that the im-
portant potential-density relationships depend
only on the magnitude of the parallel velocity.
Hence, any double-layer solution with current
can be transformed into a currentless solution
by symmetrizing the velocity distribution. Double
layers do not have unique current-voltage rela-
tions. Double layers occur as a result of forced
changes in the distribution functions. These dis-
tributions need not carry current.
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