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We describe a rigorous argument establishing the Berezinski-Kosterlitz-Thouless
transition in a class of bvo-dimensional models including the plane rotator and the
Coulomb gas. The main idea is to rewrite correlations in the Coulomb gas as super-
positions of correlations in gases of neutral molecules of variable size and small ef-
fective activity.

PACS numbers: 64.60.Cn

In recent years a number of authors have given
fairly convincing arguments for the existence of
a phase transition and a line of critical points in
a class of two-dimensional (2D) models, including
the rotator model, the related Villain model, and
the lattice Coulomb gas. (See Befs. 1 and 2 and
references given therein. ) All models are known
to have a high-T (T=temperature) phase with ex-
ponentially decaying correlations. The presumed
transition is one from the high-T to a low-T
phase characterized by a power-law falloff of
correlations and scaling, so that all temperatures
T below some positive T, are critical points.
Since the rotator model, and the Villain model,
have a continuous, global U(1) symmetry, this
transition is not accompanied by symmetry break-
ing, and there is no spontaneous magnetization-
a well-known consequence of Mermin's theorem. '

Perhaps the best arguments for the existence
of the transition described above are based on
analyzing the low-T behavior of the 2D Coulomb
gas. Consider a positive and a negative charge
separated by some distance l. They can be
viewed as forming a neutral dipole whose Boltz-

mann factor is ~exp[-(P/2w) ln(l+1)], where P
is the inverse temperature. Moreover, when the
gas is very dilute, dipoles are the dominant con-
figurations, and the exponential of the mean en-
tropy of a dipole of length I is ~l'. Thus, the
probability for such a dipole to be present is
~l'exp[-(P/2m)ln(l+1)] which is summable in l
when p&8m. Therefore, the 2D Coulomb gas at
large P is expected to behave like a dipole gas.
It is known that correlations in a dipole gas have
a power-law falloff." In this paper we sketch a
proof of existence of the transition described
above —henceforth called the Kosterlitz- Thouless
(KT) transition —for the simplest model, namely
a dilute 2D Coulomb gas, which is inspired by
the above heuristic argument. Details of our
proof, as well as extensions to other 2D models
and higher-dimensional, Abelian lattice gauge
theories, will appear elsewhere. '

We now describe some of our main results con-
cerning 2D models: For sufficiently low tempera-
tures, (i) the spin-spin correlation in the plane
rotator and the Villain model has a power-law
falloff and (ii) the Coulomb gas does not screen;
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and at high temperatures, (iii) the expectation of

[ p(0) —p(x)]' in the discrete Gaussian model,
dual to the Villain model, diverges like ln I xI, as
I xI —~ ("roughening transition").

Our methods extend to other 2D models, such
as the so1id-on-solid model and the z„models,
for n large enough (existence of an intermediate,
massless phase). We can also prove transitions
for the 1D Ising model with ferromagnetic, 1/r'
interactions and the 3D or 4D Abelian lattice
gauge theor ies.

Next, we outline our proof of existence of a low-
temperature, dipole phase without screening in
the 2D Coulomb gas, in contrast to the high-tem-
perature plasma phase which is known to exhibit
Debye screening. ' The Coulomb potentia1. on the
simple square lattice Z' is given by P(i —j)
= (- 6) (i, j) ~ —(1/2w) ln

I
i —j I, for large I i —j I,

where 6 is the finite-difference Laplacian. Each
site j~ Z is assigned a charge variable, q(j),
with values 0, +1. The function il = (q(j)j de-
scribes a configuration of charges in the Coulomb
gas. Its electrostatic energy (self-energies in-
cluded) is given by

(e) =-'E q(')q(j)V('- j)=---'&q, & 'q&. (1)

The total charge, g q(j), is required to vanish.
The grand partition function of the Coulomb gas
is given by

where P is the inverse temperature and z the bare
activity of a particle with charge +1.

The first step in our proof reexpresses the
Coulomb gas in the well-known sine-Gordon rep-
resentation': Consider the zero-mass Gaussian
measure

des(p)= fi 'exp((p &p)/-2p)+dpU) (3)

where —(p, hp) =+[p(i) —p(j)] with i and j
nearest neighbors and N is a normalization factor
chosen so that Jd pa(p) =1., Since the covariance
of d p8(p) is proportional to the Coulomb poten-
tial, namely p p;

exp(- PE(il)] =fII exp[i p(j)q(j)]d p, ii(p),

provided that Qq(j) =0. Inserting this identity in
(2), one obtains

Zc i(P, z) =f~[l+zcosp(j)]du8(p).

Z.(p)=f ~ [1+K(p ) o p( )]d (p) (6)

and p(p ) =+~ p(j)pQ). The coefficients c, are
positive with Q c„=1. The index k labels the
various collections of molecules g~ that are
formed from free charges. In (6), K(p) is the
bare activity of the molecule p which depends
only on z, the bare activity of a single particle in
the Coulomb gas, and on the shape of p.

The important point in this identity is that in
two dimensions all particles can be grouped to-
gether in finite, neutral molecules, hence

P,. p~(j) =0, for all o.. This fact implies that
all expectations ( ~ ~ ~ )„corresponding to the
measures

Z„' Q [1+K(p ) cosp(p )]dps(p)

are formally invariant under the contiriuous sym-
metry p(j) —p(j) +c, for all j, where c is an
arbitrary constant. One therefore expects that
by a Mermin-type argument

( I p(p) I2), o- const p ' (7)

for all k. If the constant on the right-hand side
of (7) is independent of k, we obtain

& I p(p) I')coul constp '. (8)

At sufficiently low temperature and z (exp(pe)
we shall establish (8). It is well known that
([p(0) —p(x)]') is the effective electrostatic po-
tential between two opposite charges in the Cou-
lomb gas. By Fourier transformation we see
that (8) implies the effective potential diverges
logarithmically, hence there is no screening.

Our proof of (7) is based on a Mermin argument'
which is applicable only if the activities K(p„)
are sufficiently small so that ( ~ ~ ~ ), is a positive
measure. In general, however, the K(p ) are
quite large. %'e resolve this problem by means
of a "block spin" integration: We prove the

Next, let Qj denote some collection of nonover-
lapping charge distributions lp J, n = 1, 2. . . .
Each p describes a neutral molecule of finitely
many charged particles with charge p+) =0, +1,
at site j. We then prove the identity

zc~, (P, z) =Q ci, Z~(P),

where Z„denotes the partition function for a gas
of molecules p
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identity

Z „,(P, )=P,Z, (P, )=Q „J H (1+[K(p )]- -" ' o y( .)]d,(y),
jol v~&~~I, 3

(9)

z(P, p ) (exp[(-cP+b) lnd(p )], (10)!

where E&„(p ) is some portion of the electro-
static self-energy of p, and p is an effective
(renormalized) charge distribution not, in gen-
eral, integer valued, but of total charge 0. The
renormalization transf ormation

p -P. , K(p ) z-(P, p )-=K(p ) exp[-P&i. ,(p.)]
preserves the electrostatic interactions between
distinct molecules and extracts part of the self-
energy by spreading out p~. '

The key point is now to show that, in two di-
mensions and for P large enough,

!where d(p„) is the diameter of the molecule p .
Inequality (10) is a consequence of the logarithmic
growth of the 2D Coulomb potential and fails in
higher dimensions. We now observe that for P
»b/c, z(P, p„) «1; hence large neutral molec-
ules are suppressed and Mermin's argument can
be used to prove (7).

Next we comment on the proof of the key identi-
ties (5) and (9).

identity (5) is obtained from (4) by grouping to-
gether charges in the Coulomb gas so as to form
neutral molecules of finite size. This is achieved
by repeatedly applying the simple identity

(1+K,cosa)(1+K, cosb) = &(1+3K, cosa)+ &(1+3K,cosh)

+ &[1+SK,K~ cos (a + b)] + ~[1+SK,K, cos (a —b)]

to pairs of factors in I(y; z) =g, [1+z coscp( j)].
First, all sites are grouped in nearest-neighbor
pairs (i,j), and Eq. (11) is applied to pairs of fac-
tors in I(y; z ), with a = y (i ), b = y (j), and K, =K~
=z. The right-hand side of Eq. (11) is, for each
pair (i,j), substituted back into I(y; z ), and the
resulting expression is expanded in a sum of
terms of the form

II [1+K(p„')cosy(p„')].

To each pair of factors indexed by charge distri-
butions p ', p&' which are not yet in desired form,
in particular have nonzero total charge, identity
(11) is applied again, with a =y(p„'), K, =K(p„'),
b =p(pz'), and Kl, =K(pz'). These operations are
organized inductively on a sequence of length
scales 2, rn =0,1,2, ... . On scale 2, all
charge distributions which are not yet in final
form (e.g. , have nonzero total charge) are sepa-
rated from each other by a distance )2, and (11)
is applied to pairs of factors corresponding to
charge distributions at a distance between 2 and
2 "from each other. Each application of (11) ob-
viously increases bare activities by a factor of 3.
Thus

K(p ) z I P a I SwP a)

I p. l =XI p.(j)I,

and N(p„) is the number of times identity (11)

! had to be applied to obtain a factor [1+K(p )
&&cosy(p )]. The main combinatorial estimate in
this scheme is the following

~(P a)
(inS)1V(p„) =-S(p ) (const Q & (p ), (12)

where A (p„) is the area, of p on scale 2", i.e.,
the minimal number of 2 ~2 squares needed to
cover the support of p„, n(p~) =constlnd(p~), and
the constants are independent of n and the partic-
ular collection X~ to which p„belongs. The quan-
tity S(p„) may be interpreted as the entropy of a
molecule with charge distribution+ p . If p is a
dipole of length l, 2 (p) =2 for m ( log, l, and we
see that S(p) ~lnl, in accordance with the heuris-
tic argument made at the begining.

The final result of the expansion is

I(y;z) =pc, II [1+K(p ) cost(p )],(»)
(~l P n& "&d

with K(p~) =z P" expS(p„). After integration with
the Gaussian measure dp 8(p), this yields (5).
The details in this expansion can be arranged
such that the distance between two molecules with
charge distributions p~, p& is at least

const[min[d(p ),d(p z)]]" (14)

for some n, ~ &n & 2. This sparseness condition
is needed in order to perform the renormaliza-
tion transformation which we sketch next.

Our renormalization transformation (9) is based
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on some elementary electrostatic identities. Con-
sider a molecule with charge distribution p. Let
f be a charge distribution (not necessarily inte-
ger valued) which does not overlap with p„, a ) 2,
i.e. , p f (j)p„(j)=0. If we set p, = p, +6f then
the electrostatic energy between p, and p equals
the electrostatic energy between p, and p for n) 2 since —EV(i —j)=5(i,j). Moreover, the total
charge is preserved, p p, (j)=g p, (j). However,
we have made a change in the self-energy and to
compensate for this change we set E„,(p, ) =E(p,)

E(P-i)
If our gas of molecules is sufficiently sparse

as in (14), we can redistribute the charge of p,
over a wide region. More precisely we choose
f (j ) to approximate —(6 'p, ) (j) and so that

Q~ f (j)p„(j)=0 for a) 2. We show that f can be
chosen so that E(p,) is relatively small and hence
E„,(p, ) =E(p,). A similar procedure is applied
to each of the p, a ) 2. This renormalization to-
gether with the sine-Gordon transformation yields
(9).

Finally we briefly indicate how to bound E (p, )
=E„,(p, ) from below, so that the effective activ-
ity of the molecule p» given by K(p, ) exp[- pE,
(p,)l, is small, for p sufficiently large. Recall
that if (qQ;)) is a collection of charges q =y ]
located at points x,. ~ Z', the electrostatic ener-
gy of (q(x, )) is larger than const+, In(p;+1),
where y,. is 2 the distance between x, and the near-
est charged particle. This type of inequality is
applied on all distance scales 2, i.e. , charges
q,. are replaced by charged submolecules p, , of

size 2". The distances r, Q), measured in units
of 2, correspond to the distance to the nearest
charged submolecule.
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