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A related 1inear stability calculation to explain the
wavy instability of Benard convection rolls has been
given by R. M. C1ever and F. H. Busse, J. Fluid Mech.
65, 625 (1974).
"The stability calculations exploit symmetries in y

and z consistent with the Navier-Stokes equations.
The fastest growing mode for the particular set of
symmetries assumed here has Im(0) = 0, and as a re-

suit G„,G, can be taken real and G~ pure imaginary.
This reduces the computational work considerably.
We use 33 Chebyshev polynomials in z for each of the
two Fourier modes in x, resulting in a 106&& 106 (real)
matrix eigenvalue problem. Further details will be
published elsewhere.

'2E. C. Bullard and H. Gellman, Phil. Trans. Roy.
Soc. London, Ser. A 247, 213 (1954).
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The dynamics of envelope solitons accompanied by density depressions (cavitons) is
analyzed with use of the driven Zakharov equations for inhomogeneous plasmas. The new
contributions due to ion inertia as well as the novel phenomenon of amplitude-width-
symmetry breaking are discussed. The results are applied to resonance absorption pro-
cesses in laser-produced plasmas.
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In an inhomogeneous plasma, conversion of
electromagnetic waves into electrostatic waves
enhances the field strengths of the latter by sev-
eral orders of magnitude in the vicinity of the
resonant layer, where the incident frequency
matches the local plasma frequency. The ampli-
tude swelling is due to the reduction of the group
velocity from the velocity of light c to the elec-
tron thermal velocity v@,. The enhancement fac-
tor is approximately (c/v@, )' ', and thus non-
linear effects' play an important role.

The importance of radiation-pressure effects
in laser-plasma interaction has been demonstrat-
ed by particle simulations. ' According to these
results, a variety of processes occur at critical
density. Some of the most important are reso-
nant heating of electrons and generation of supra-
thermal particles, strong steepening of density
profile, etc. In the past, simplified analytical
models" have been proposed to explain these
basic physical phenomena. In this Letter, we
focus on one of them, i.e., profile steepening.
A similar problem was studied in Ref. 3, where
profile steepening because of cavity formation
could be predicted. However, the calculations
were based on the driven nonlinear Schrodinger
equation ignoring ion inertia. We believe that
ion inertia effects can become important. For
example, in the static approximation (Bn/Bt =0),
it was found that a soliton would be strongly ac-
celerated down the density gradient reaching even

electron thermal velocities. We expect that be-
cause of coupling with ions, the acceleration
should be much smaller than predicted by the
cubic nonlinear Schrodinger equation. Then the
soliton stays for a longer time in the resonant
region. Since position, velocity, phase detuning,
etc. , are coupled in a highly nontrivial manner,
the problem of profile steepening at the critical
density in laser-created plasmas via soliton
formation has to be reconsidered.

The formulation presented here consists of de-
scribing the evolution of the electric field E
through the nonlinear Schrodinger equation in
which the density modification n is obtained from
the ion-acoustic wave equation with the effects of
the ponderomotive force included self-consistent-
ly. Thus, in the one-dimensional electrostatic
approximation and for small driving fields Ed,
the basic equations are

is 5F./at+ 62Z/5x' —(o.x+n)Z =Z, ,

9n/&t = —6u/ac,

su/st = -(6/sx)(n+EE+) .

(I)

(2)

(3)

Here, the following units are used: time, v3/&u~, ,
where ~~; is the ion plasma frequency; length,
vS A.„where A., is the electron Debye radius;
potential, T, /e; density, Ã0; electric field,
( &4N, T, )'~'; and velocity, c,=(T, /m, )' '. Because
of this normalization the parameter e = 2(m, /
3m, )'~' appears in Eq. (I). In actual experiments

Oc 1980 The American Physical Society 993



VOLUME 45, NUMBER 12 PHYSICAL REVIEW LETTERS 22 SEPTEMBER 1980

cussed. 4
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ive u powerful momentum method. "
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is(a/St) fEz*dx= E„J-(Z —Z+)dx.

for the total momentum

&/Bt) J(icZ &E*/&x+nu) dx = — JEE+ dx;x = —o. EE*dx; (5)

! and for the energy,

J [(&E/&x) &E*/&x + nEE++ -'n' 'u" -dx =—+ zn + 2u']dx = —n.)xEE*dx E~—J (E+E*)dx+ const.

In addition, the equations for the cor e center of gravity of the mot'

is(&/&t) Jxzz*dx = —J [2EBE~/ex+xz~(E —E* dx

(8)

(7)j

and for the phase P of Et

—s J (By/Bt)EE* dx = J BE= f[( /Sx) Sz+/ax+(~+n)zz*+ ,'E, (z+E*-d (8)

(9b)

(10)
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FIG. 1. Plot of the velocity v in unoct y e (in units c~) vs tixne t
i s ~&, ' for 0'=0.003 and E =0.004
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Z=v2 (1-x '—', ) q q sech[ t}(x —x,) ]exp [i(ax + b) ],
n = 2A' sec-h'[ gx —x,) ],

(9a)

u = —2ti'q'x, sech'[gx —x,) ],
where the dot denotes derivative with respect to

(9c)

time. Note that in this A, i u e, driven sin xs sensate velocity, amplitude, driven s
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computations for E„g0 are pew and of utmost
interest. Our solutions of the five ordinary dif-
ferential equations show the following general
behavior. The soliton formed will have its height
increasing because of the energy input due to the
driver. The soliton saturates when it moves out
of the resonance region due to acceleration in the
density gradient. So far the behavior is expected.
However, new effects changing the physical con-
clusions for, e.g. , saturation values and profile
modification appear. We will first discuss the
phenomena of ion drag and amplitude-width —sym-
metry breaking.

The acceleration and thereby the velocity of a,

soliton are strongly influenced by ion mass ef-
fects. In Fig. 1 we have displayed the time varia-
tion of the velocity. After an initial phase, the
averaged velocity approaches the result given by
(10) for E~= 0. The velocity is always smaller
than c, whereas previously' it became larger
than v„. Correspondingly, previously the soliton
has traveled over many Debye lengths and there-
by presumably left the resonance region before
saturation could occur. In the present case, the

position of the soliton is shifted only by a few
Debye lengths. This occurs since actually the
electrons are tied to the ions via the ambipolar
field; the effective ion drag hinders the soliton
from reaching sound velocity.

The width of the soliton g
' turns out to be con-

stant in time. This effect was detected by use of
a generalized Ansatz for the soliton shape. The
result is that the driver breaks the amplitude-
width symmetry assumed previously, i.e., the
width is not anymore inversely proportional to
the amplitude. This at the first moment surpris-
ing outcome of our general nonlinear investiga-
tion is also true in the linear regime as will be
shown now. To be consistent with the adiabatic
approximation of the nonlinear calculation we
have to choose an adiabatically turned on driver
[E~-E~ exp(yt) for —~ & t ~0 with y ~ 0; y

' can
be interpreted as the finite rise time of the laser
pulse]. After transforming the spatial inhomo-
geneity in the usual manner, the linear equation

BE E &AtX 22& tic +, =E„exp —,+yt, 11
~X 3E

can be solved by Green's-function method,

G(x, t;x', t ) = i[4vi~(t-t')]-''exp i, e(x -x')'
2 I, -t' (12)

We find a solution of constant width
~ Qo 1 ~ 2 3E(x, t) =iE„e 'l' J exp( —Bi o.'r' —iver —eye) d7'.

The inverse width of (13) is of order

'g —1TQ/4 Ey. (14)

We can use expression (14) as an initial value for our nonlinear solution. Since in the latter the width
remains unchanged, Eq. (14) also predicts the scaling of the final soliton width, in terms of the inhomo-
geneity scale length and pump shape.

Let us now discuss the implications for energy saturation and profile steepening. In Fig. 2, the re-
laxation and saturation behavior of the field energy is shown. We first observe that the field energy
reaches a peak on the ion time scale. Saturation occurs after many ion periods and not as predicted
previously on the electron time scale. This is now expected since because of the ion drag the total
density has to adjust itself to the radiation pressure. As a consequence of ion inertia and constant
soliton width saturation occurs at a, lower level (about 50%) than calculated previously. Furthermore,
pronounced relaxation oscillations appear. They can be understood from the asymptotic form (large t)
of the energy equation

(15)

with W =
~ JEE*dx=q'q(1 —xo') .

The solution of (15) is

~slzE —
slat y/atQ. 0

0 0 23/2 1/2 1/2 1/2 1/2 1/2 ~ 1/2 1/2Q e q & E 7 6
(16)

995



VOLUME 45, NUMBER 12 PHYSICAL REVIEW LETTERS 22 SEPTEMBER 1980

0.6

0.12-

0.4

0.08-

0.2
0.04

500 1000

FIG. 2. W (4fl&l dx inunits 4~3xÃp' A. )
units 2/cu ) for theor e same parameters as in Fig. 1 0

1000500 t

FIG. 3. 3. Absolute maximum densit de r
/

as sn Fig. 1.
v

' '
&, or the same parametervs in units 2 & f rs

where C&z& is t( )
'

the Fresnel integral. From (16)
we see that the chaaracteristic frequency at the
nth maximum

(u„= 2~/(at) „=(8~no./e) ~'
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