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The lighter perturbers He and Ne have rather
small values of a, indicating the importance of
the repulsive parts of the potentials for these
systems.

Our measurements confirm the prediction that
the collision-broadened line shape manifests a
significant dispersion component in the core re-
gion in addition to the well-known Lorentzian.
The dispersion component is due to the finite
duration of collisions (T~) and produces an asym-
metric line shape with a red-blue asymmetry of
order ~e -w, ~T, . The dispersion component ac-
curately accounts for the difference between ob-
served line shapes and a Lorentzian. Hence the
core-region line shape can be characterized by
three parameters~he Lorentzian width and shift,
and the asymmetry parameter. The asymmetry
parameters have been determined with less than
10% error, but it has not been possible to check
corresponding theoretical predictions to this
precision. The scalar theories' ' do not contain
prescriptions for including the three excited-
state potentials dissociating to the Na 3P fine-
structure levels, hence accurate theoretical cal-
culations have not been possible even where the
potentials are accurately known. Calculations
based on more sophisticated theories" would be
most welcome, and would have the advantage of
being immediately testable at the (5-10)% level.
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A linear three-dimensional instability mechanism is presented that predicts Reynolds
numbers for transition to turbulence in plane channel flows in good agreement with ex-
periment.

PACS numbers: 47.25.-c, 47.20.+m, 47.60.+i

While experiments' show that incompressible
plane Poiseuille and plane couette flow may un-
dergo transition to turbulence at Reynolds num-
bers R of order 1000, linear stability analysis of
these plane parallel flows gives critical Reynolds
numbers of 5772 for plane Poiseuille flow' and
~for plane couette flow. ' This discrepancy be-
tween theory and experiment suggests that the

mechanism of transition is not properly repre-
sented by parallel-flow linear stability analysis.
In this Letter, we present a new linear three-
dimensional mechanism that predicts transition
at Reynolds numbers in good agreement with ex-
periment for both plane Poiseuille and plane cou-
ette flows. Here we present the theory applied to
plane Poiseuille flow, defined as flow between
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dE/dt =f(E). (2)

Typically the critical points of (2) are alternately
stable and unstable, and so the lower-branch
(LB) solutions on the subcritical neutral surface
plotted in Fig. 1 are unstable while the upper-
branch (UB) solutions are stable.

fixed parallel plates that is driven by a pressure
gradient.

We begin by studying two-dimensional traveling-
wave solutions to the Navier-Stokes equations

v(g, z, t) = F(~- ct, z), (1)

where c is a real wave speed, g is the downstream
coordinate and z is the coordinate perpendicular
to the channel walls at a = +1. No-slip boundary
conditions are applied at the walls and 2w/o. peri-
odicity in g is assumed. For all A, one solution
is the laminar flow (1 -z'), where A=1/v and v is
the kinematic viscosity. For A z 2900, up to two
other solutions (neglecting an arbitrary phase)
may exist for any given cv. ' The locus of points
in (E, A, a) space for which these solutions exist
is called the neutral surface. Here E is the en-
ergy of the flow relative to that of the laminar
flow. A slice of the neutral surface for given
subcritical Reynolds number (2900 ~ R& 5772) is
shown in Fig. l.

If a one-dimensional phase-space representa-
tion were appropriate to describe the behavior
of flows off the neutral surface, 8 would evolve
according to

While these stability predictions are correct,
the evolution of two-dimensional flows is not re-
stricted to a one-dimensional phase space. Pro-
jections of numerical solutions' of the two-di-
mensional Navier-Stokes equations on the two-
dimensional phase space [(E,)'~', (E,)'~'] are
plotted in Fig. 2. Here E~ is the kinetic energy
in that part of the flow that depends on ~ like
e "~". Orbits of solutions with initially large en-
ergies do not follow simple curves. The time-
dependent evolution of two-dimensional flows ev-
idently requires a multi- (likely infinite-) dimen-
sional phase space. Thus, I andau-Stuart-Wat-
son nonlinear stability theory, which gives evo-
lution equations of the form (2), cannot be valid
away from the neutral surface. '

Several other features of Fig. 2 are noteworthy.
First, the two orbits in the lower left-hand cor-
ner illustrate the existence of a threshold ener-
gy (near that of the LB solution) below which dis-
turbances decay. Second, solutions with ener-
gies less than that of the UB solution (indicated
by the point marked "steady solution" in Fig. 2)
can overshoot the UB energy by factors of 4 or
more. Third, and most importantly, typical so-
lutions quickly evolve to a state within a band of
quasiequilibria and, then, only very slowly ap-
proach the steady UB solution. The time scale
for initial adjustment to a quasiequilibrium state
is of order the eddy circulation time 1/KE (i.e.,
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FIG. l. A subcritical (E,o,') slice of the neutral
surface for plane Poiseuille flow at A = 4000. The
stability of solutions is indicated by the arrows. The
behavior shown in this plot is typical for 2900& R
& 5772.

FIG. 2. A phase portrait of disturbances to laminar
plane Poiseuille flow in [(E&)',(E&) ] space at
R = 4000, n = 1.25. The dots, equally spaced by 1.25
in time, indicate the evolution of perturbations from
initial conditions proportional to the least stable Orr-
Sommerfeld eigenfunction at this (&,B). Note the ex-
istence of a band of quasiequilibria.

990



VOLUME 45, NUMBER 12 PHYSICAL REVIEW LETTERS 22 SEPTEMBER 1980

2-D

R=1500

500

75

of order 10), while the time scale for approach to
the equilibrium state is of order the diffusion
time 1/v (i.e., of order 1000-10000). In the
quasiequilibria, the spanwise vorticity must be
nearly constant on streamlines, ' so that equilib-
rium is achieved by diffusion of vorticity. In

fact, vorticity can vary by at most 0(u) along
interior streamlines of the equilibrium flows.
Nearby flows must have the same property im-
plying the existence of quasiequilibria evolving
only on a diffusive time scale.

The quasiequilibria are the basis of our transi-
tion mechanism in plane Poiseuille flow as direct
numerical solution of the Navier-Stokes equa-
tions' shows that they are strongly unstable to
inf initesimal three-dimensional disturbances. In
Fig. 3, we plot the evolution of (initially small)
three-dimensional disturbances superposed on
finite-amplitude two-dimensional motions. Evi-
dently, the three-dimensional disturbances quick-
ly achieve a form that grows exponentially in
time for R ~1000. The growth rate of the three-
dimensional disturbances is rapid with their am-
plitude increasing by a factor of about 10 in a

time of 10. This short time scale for subcritical
three-dimensional growth should be contrasted
with the long time scale of order 1000 for evolu-
tion of supercritical Orr-Sommerfeld modes. '

There is strong evidence that this instability is
a physically relevant one in that it is fairly insen-
sitive to initial conditions and has small thresh-
old energies. It is necessary to distinguish here
between this instability and the ensuing transition
to turbulence. If the two-dimensional flow per-
sists sufficiently long for the three-dimensional
perturbations to attain a finite amplitude, direct
numerical simulation has shown' that the result-
ing three-dimensional flow quickly develops a
turbulent character with strongly nonperiodic be-
havior. Thus to "predict" transition one must
know the initial two-dimensional and three-di-
mensional energies as well as their respective
time scales. For instance, the most dangerous
three-dimensional instability for given two-di-
mensional energy is not necessarily the most
likely to force transition if the two-dimensional
state is outside the band (in wave number) of
quasiequilibria. It is possible to use our methods
to construct a neutral surface for transition in
any given (presumably large) parameter space.
However, we confine attention here to demon-
strating that our mechanism predicts transitional
Reynolds numbers in accordance with experiment.

The exponential growth illustrated in Fig. 3
suggests that a linear instability mechanism is
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FIG. 3. A plot of the growth of three-dimensional

perturbations on finite-amplitude two-dimensional
states in plane Poiseuille flow at (~,P) = (1.32, 1.32).
Here &2D is the total energy (relative to the laminar
Qow) in wave numbers of the form (n&, 0), while E3D
is the total energy in wave numbers (n&, P). For R

1000 we obtain growth and for A = 500 decay. The
growth rate of the three-dimensional disturbance &~-
PEitgde at R = 4000 is about 0.18 (-+E~D) and depends
only weakly on A for larger A. The initial conditions
are superpositions of the laminar Qow, a l. large (E~D
= 0.04) 1 two-dimensional Orr-Sommerfeld mode with
wave vector (&, 0) and a I.very small (E 3D

= 10 ) )

three-dimensional transverse Orr-Sommerfeld mode
with wave vector (O, P).
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FIG. 4. A plot of the growth rate 0 of three-dimen-
sional perturbations as a function of P at A = 4000,
& = 1.25. Note the good agreement between the linear
calculation and the two-mode direct simulations. In-
creasing the number of retained modes in x increases
the growth rates. However, the error in the two-
mode model is not large.
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involved. ' Assuming a flow of the form

v(x, t) =F(x —ct, s)

+ eRe [G(x —ct, s)exp(ot+ iPy) ],
substituting into the Navier-Stokes equations, and
linearizing with respect to ~, a linear eigenvalue
problem for a results. The Galilean transforma-
tion to a reference frame moving with the phase
speed c eliminates time-dependent coefficients,
so that the problem is separable in t. The re-
sulting eigenvalue problem has been solved nu-
merically with use of Chebyshev polynomial ex-
pansions in s and highly truncated Fourier series
expansions in g for F and G. In Fig. 4, we plot
the maximum growth rate, "Re(v), vs the span-
wise wave number P for 8=4000, n =1.25. The
results of direct numerical simulations (cf. Fig. 3)
are also plotted in Fig. 4. Evidently, the large
growth rates observed in the direct numerical
simulations can be explained by this linear eigen-
value problem.

Note that the linear theory presented above can
be extended to Reynolds numbers below 2900 by
freezing the quasiequilibria which evolve very
slowly compared to the rapid exponential growth
of the three-dimensional perturbations. For A
~1000, the quasiequilibria decay sufficiently
slowly that three-dimensional perturbations can
grow, overwhelm the two-dimensional flow, and
break down to turbulence.

The rapid growth rates described above are due
to the corn5ized action of vortex stretching by the
nearly inviscid two-dimensional steady motion F
and tilting of the vortex lines of F by the pertur-
bation G. By itself, vortex stretching by F can-
not give rapid exponential growth rates because
of the two-dimensional antidynamo theorem. "
Detailed flow visualizations of the instabilities de-
scribed here will be given elsewhere. It will be
shown that three-dimensional perturbations grow
on a time scale of order 1/v'E, D, which must be
shorter than the decay time of the two-dimension-
al motion for the instability to be effective. The
sharp cutoff in growth rate Re(v) for small P ob-
served in Fig. 4 reflects a threshold of stream-
wise vorticity for stretching to persist.

Direct numerical simulations' of transition in
plane couette flow show that while there is no
evidence that equilibria of the form (1) exist, the
three-dimensional instability process outlined
above is still effective down to Reynolds numbers
of order 1000. While there are no quasiequilibria
in plane couette flow that evolve on purely dif-

fusive time scales, the decay rates of finite-am-
plitude two-dimensional disturbances are still
several eddy circulation times. This implies
that the threshold three-dimensional energies in
plane couette flow are somewhat larger than in
plane Poiseuille flow. However, the resulting
instability is at least as strong and turbulence
quickly ensues.
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The dynamics of envelope solitons accompanied by density depressions (cavitons) is
analyzed with use of the driven Zakharov equations for inhomogeneous plasmas. The new
contributions due to ion inertia as well as the novel phenomenon of amplitude-width-
symmetry breaking are discussed. The results are applied to resonance absorption pro-
cesses in laser-produced plasmas.

PACS numbers: 52.35.Mw

In an inhomogeneous plasma, conversion of
electromagnetic waves into electrostatic waves
enhances the field strengths of the latter by sev-
eral orders of magnitude in the vicinity of the
resonant layer, where the incident frequency
matches the local plasma frequency. The ampli-
tude swelling is due to the reduction of the group
velocity from the velocity of light c to the elec-
tron thermal velocity v@,. The enhancement fac-
tor is approximately (c/v@, )' ', and thus non-
linear effects' play an important role.

The importance of radiation-pressure effects
in laser-plasma interaction has been demonstrat-
ed by particle simulations. ' According to these
results, a variety of processes occur at critical
density. Some of the most important are reso-
nant heating of electrons and generation of supra-
thermal particles, strong steepening of density
profile, etc. In the past, simplified analytical
models" have been proposed to explain these
basic physical phenomena. In this Letter, we
focus on one of them, i.e., profile steepening.
A similar problem was studied in Ref. 3, where
profile steepening because of cavity formation
could be predicted. However, the calculations
were based on the driven nonlinear Schrodinger
equation ignoring ion inertia. We believe that
ion inertia effects can become important. For
example, in the static approximation (Bn/Bt =0),
it was found that a soliton would be strongly ac-
celerated down the density gradient reaching even

electron thermal velocities. We expect that be-
cause of coupling with ions, the acceleration
should be much smaller than predicted by the
cubic nonlinear Schrodinger equation. Then the
soliton stays for a longer time in the resonant
region. Since position, velocity, phase detuning,
etc. , are coupled in a highly nontrivial manner,
the problem of profile steepening at the critical
density in laser-created plasmas via soliton
formation has to be reconsidered.

The formulation presented here consists of de-
scribing the evolution of the electric field E
through the nonlinear Schrodinger equation in
which the density modification n is obtained from
the ion-acoustic wave equation with the effects of
the ponderomotive force included self-consistent-
ly. Thus, in the one-dimensional electrostatic
approximation and for small driving fields Ed,
the basic equations are

is 5F./at+ 62Z/5x' —(o.x+n)Z =Z, ,

9n/&t = —6u/ac,

su/st = -(6/sx)(n+EE+) .

(I)

(2)

(3)

Here, the following units are used: time, v3/&u~, ,
where ~~; is the ion plasma frequency; length,
vS A.„where A., is the electron Debye radius;
potential, T, /e; density, Ã0; electric field,
( &4N, T, )'~'; and velocity, c,=(T, /m, )' '. Because
of this normalization the parameter e = 2(m, /
3m, )'~' appears in Eq. (I). In actual experiments
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