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Two-Dimensional Interaction of Ion-Acoustic Solitons
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The two-dimensional nonlinear interaction of two planar ion-acoustic solitons has been
studied experimentally. When the angle between the wave vectors of the two interacting
solitons is small and the soliton amplitudes approach a critical value, a resonant three-
soliton interaction occurs.

PACS numbers: 52.35.Mw, 52.35.Dm, 52.35.Fp

Experimental studies of ion-acoustic solitons in
the last decade have revealed that the behavior of
solitons in one spatial dimension is well described
by the Korteweg-de Vries equation. ' The inter-
action of solitons in two and three dimensions is
a problem of current interest. Recently, Ze et
al.' have found that two interacting spherical ion-
acoustic solitons produce a new nonlinear wave
pulse. Although they speculated that this new
wave was a consequence of the resonant interac-
tion discussed by Newell and Redekopp, ' no evi-
dence of a resonance effect was presented. Ya-
jima et al. have found an explicit solution for two
interacting planar solitons propagating in differ-

i

ent directions. In this Letter, we present the
first experimental evidence which confirms a res-
onant three-soliton interaction and provides a
quantitative comparison to the theory.

Before describing our experiment, we summa-
rize the properties of solutions obtained in Ref.
4. We consider two planar solitons character-
ized by the density perturbations, n =5n sech'(k, .

~ r —~t) (i=1 and 2), which propagate in the di-
rections of the vectors k, and k, . These taro pla-
nar solitons intersect and interact nonlinearly.
Under these circumstances, a stationary-state
expression for the density perturbation of the in-
teracting solitons can be written as

—= —,, —(exp(29, ) + exp(28, ) +4 sin'( —,'g) exp[2 (8, + 8,)]
0 0

+A [4 cos'(—,
'

p) + exp(28, ) + exp(28, )] exp[2 (9,+ 8,)]},
where

F. =1+exp(28,)+exp(28, )+A exp[2(8, + 9,)],
and for small (,

(2)

200 200
where g is the angle between k, and k„9,=k,. ~ r
—~t, and n0 is the background plasma density.
We consider only the case in which two solitons
have equal amplitudes 6n, where 6n/n, =6k'/kD',
k =ikJ = ik2i, &u/k =C,(1+An/3no), C, is the ion-
acoustic speed, and kD is the Debye wave number.
When 6n/n, approaches a critical value 5n„/n,
—= g'/6, the parameter A becomes infinite, indi-
cating that the resonance, discussed in Refs. 3
and 4, occurs.

Figure 1 shows equal-amplitude contour plots
of Eq. (1) for two different cases, 6n/6n„=0. 2

and 0.998, when g =m/6 and t =0. The density
perturbation propagates in the x direction with a
speed ~/k cos(g/2) without changing the shape of
its structure. When 6n/()n„=0. 2, the two solitons
superimpose linearly. However, when 6n/6n„
=0.998, which is near resonance, the maximum
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FIG. 1. Equal-amplitude contour plot of Eq. (1) when
(a) dnl&n„=0. 2, bn/no= 0.006 85; (b) 6n/&n„=0. 998, 5n/
no=0 0342
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FIG. 2. Theoretical (dotted lines) and experimentally
measured (solid lines) plots of (a) the phase shift and

(b) the amplitude enhancement ratio, as a function of
the ratio of soliton amplitude to the critical amplitude,
6n/5g„. g = n /6.
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amplitude 5~ occurring near the center of the
structure is 1.75(25n) indicating a nonlinear inter-
action. A new large-amplitude soliton is created
and causes the phase shift ~, defined in Fig. 1.

The phase shift x and the amplitude enhance-
ment ratio 5n /5n are plotted in Fig. 2 as a func-
tion of 5n/5n„. As 5n approaches 5n„k logarith-
mically goes to infinity indicating that the width
of the new soliton in the y direction becomes
large. The tluantity 5n /5n approaches 4 as 5n
goes to 5n„, but decreases to 2 when 5n/5n„ is
small. When 5n&5n„, the theory predicts an (un-
physical) singular soliton.

The experiment was carried out in a double-
plasma device. ' The device consists of two iden-
tical, electrically isolated, conducting vacuum
chambers each producing a plasma by electrical
discharge in argon gas. A fine mesh grid (40
lines/cm) which is negatively biased separates
the two plasmas. The grid consists of two planar
surfaces at an angle to each other joined along a
common edge (see Fig. 3). The application of a,

half-sinusoidal voltage pulse between the cham-
bers launches two compressive ion-acoustic wave
pulses' propagating normal to the planar grid sur-
faces. The wave pulses steepen to form solitons.
The angle between the soliton propagation vec-
tars, k, and k„ is equal to the angle between the
vectors normal to the two planar grid surfaces.
Density perturbations are measured by detecting
the electron saturation current with a planar Lang-
muir probe having dimensions 1&& 8 mm'. The
ion distribution is also monitored using an elec-
trostatic energy analyzer. We employ a signal
sampling method to plot the wave perturbation as
a functian of space for given delay times after
the wave excitation pulses are applied. The typi-
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FIG. 3. (a) The spatial structure of the density per-
turbation is shown at t =40, 60, and 80 ps when g =n'/6.
(b) A scale diagram is shown of the wave excitation grid
and contours of the soliton peaks from Fig. 3(a) at dif-
ferent times t. The space between the twg dotted lines
is the interaction zone.

cal plasma parameters are: plasma density Qp
=10' cm '; electron temperature T, = 1.7-2 eV;
ion temperature T, = 0.1 eV; argon-gas pressure
p = (2-5)x 10 ' Torr. The iori-acoustic speed is
typically 1.5x 10' cm/sec. The Debye length zD
=2.5x 10 ' cm. Under these conditions, the plas-
ma is almost collisionless.

Figure 3(a) shows the experimentally measured
spatial evolution of the two-dimensional wave
structure at different times. The wave excitation
pulse is applied at t = 0, and the coordinate sys-
tem (x,y) used in the following description is de-
fined in Fig. 3(b). The compressional pulse al-
ready steepens and starts forming a soliton near
y = 0 at t = 40 ps. The background density in front
of the wave pulse is slightly larger than the den-
sity behind the pulse. Energy analyzer measure-
ments show that this density difference is due to
ians reflected by the electrostatic potential asso-
ciated with the wave. At t = 60 ps, we observe the
wave structure similar to the one shown in Fig.
1(b); a large-amplitude soliton occurs at x = 8.0
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cm and iyi s 1 cm and its peak splits into two soli-
tons at iyi ) 1.2 cm (the dashed lines indicate
peak position). As the wave propagates, the am-
plitude damps because of loss of energy to the re-
flected ion. As a result, the soliton width in-
creases, but the wave structure is maintained.

The contours of the soliton peak shown in Fig.
3(b) indicate that the structure we are consider-
ing appears in a zone where the two waves excit-
ed by the two parts of the grid are overlapping.
The soliton peak labeled C in Fig. 3(a) is small-
er than the one labeled B because it is closer to
the boundary of the overlapping zone. In this
zone, the propagation velocity in the x direction
is larger than C', and agrees approximately with
the theoretical value.

We observe a phase shift )t, in Fig. 3(b) after
40 )1s. As the amplitude damps the data (not
shown in the figure to avoid confusion) shows that
~ increases to a maximum at 60 ps where the res-
onance condition 5n/n, =('/8 is satisfied. The
phase shift decreases with further attenuation of
amplitude. The data points for g shown in Fig.
2(a) agree with the theoretical values except when
5n= 6n„. The phase shift does not become infinite
because the condition 5n = 5n„ is met for only a
very short period of time.

The amplitude enhancement ratio 5n„/6n is
about 2 when 5n/5n„«1 and increases with 6n
[see Fig. 2(b)]. The largest observed value of
5n /5n is about 3.1, which occurs near the reso-
nance amplitude, 5n= 5n„. We have observed the
wave structure similar to the one shown in Fig.
3(a) even when 5n) 5n„where Ref. 4 predicts only
an unphysical, singular soliton. However, the
actual wave structure is complicated. In order
to produce large-amplitude solitons with 5n & 5n„,
we need to use a wider initial pulse which evolves
into several solitons near y =0. In this case, we
observe a splitting of each soliton into two pulses
at larger iyi and these pulses then interact. We
find experimentally that both X and 5n /5n for 6n

& 5n„are smaller than those values when 5n=5n„.
To check the angular dependence of the reso-

nant interaction, we also made measurements for
g = m/2 and g = v/12. For the case g = 7t/12, we
did not observe a distinct splitting of the central,
large-amplitude soliton. This is probably due to
the fact that the interaction zone is very narrow
when (=m/12, and the soliton amplitude decreas-
es sharply outside the zone.

When (=m/2, we observed a different spatial
structure as shown in Figs. 4(a) and 4(b). For
the case shown in Fig. 4(a), a large-amplitude
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FIG. 4. Two-dimensional density perturbation show-
ing the case of a linear interaction for P =w/2: (a) 6n/
n 0

= 0.04; (b) &n/no = 0.01.

excitation pulse is used and two sets of multiple
solitons excited by each planar grid surface are
observed. In this case, the amplitude enhance-
ment ratio observed equals two. No phase shift
was observed. A linear superposition of the two
solitons occurs at y =0. Therefore no new soli-
ton is observed. Figure 4(b) shows the same be-
havior for a small-amplitude soliton. These re-
sults agree with the theory which predicts a lin-
ear interaction at large g.

It should be noted that the theory describes on-
ly a stationary state soliton structure, but it does
not treat the temporal evolution of the wave. We
have shown that this stationary state is developed
from a particular set of initial conditions.
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