Molecular Resonances and the Production of Fast α Particles in the Reaction of ¹⁶O with ^{12, 13}C Nuclei

W. D. Rae, R. G. Stokstad, B. G. Harvey, A. Dacal,^(a) R. Legrain,^(b) J. Mahoney, M. J. Murphy, and T. J. M. Symons Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 7 July 1980)

A search was made for a resonant, final-state interaction between carbon ions produced in the reactions ${}^{12}C + {}^{16}O \rightarrow \alpha + {}^{12}C + {}^{12}C$ and ${}^{13}C + {}^{16}O \rightarrow \alpha + {}^{12}C + {}^{13}C$ at $E_{1ab} = 140$ MeV. However, the $\alpha - {}^{12}C$ coincidence spectra for both ${}^{12}C$ and ${}^{13}C$ targets were instead found to be dominated by the excitation and subsequent α decay of states in the projectile.

PACS numbers: 25.70.Fg, 25.70.Bc

Recently Nagatani *et al.*¹ presented experimental results which suggest the direct population of molecular resonance states by ¹²C transfer in the reaction ¹²C(¹⁶O, α) at E_{1ab} (¹⁶O) = 145 MeV. This has aroused considerable excitement as the ¹²C-¹²C system has been of interest for over two decades and the ability to study it via a direct-transfer reaction would provide a powerful new experimental tool. A large variety of other molecular systems presumably could also be studied via such massive transfer reactions.

The inclusive spectra presented by Nagatani *et al.*¹ show structure in the yield of fast α particles on top of a large underlying continuum. After subtraction of a smooth background, broad peaks are observed whose corresponding excitation energies in ²⁴Mg correlate with structures observed in ¹²C + ¹²C elastic and inelastic scattering and fusion.¹ In contrast, these structures are not observed in the singles α spectra obtained by bombarding ¹³C with 145-MeV ¹⁶O. Since molecular resonance structure is not as prominent in ¹²C + ¹³C reactions, it has been suggested¹ that this contrast demonstrates that the reaction ¹²C(¹⁶O, α) selectively populates residual states of ²⁴Mg.

The higher-energy resonances observed in the ${}^{12}C + {}^{12}C$ system are estimated to have large partial widths for decay into the ${}^{13}C(g.s.) + {}^{12}C(g.s.)$ and ${}^{12}C(g.s.) + {}^{12}C(2^+)$ channels,² and so for the ${}^{16}O + {}^{12}C$ system an experiment in which carbon ions are detected in coincidence with α particles could be expected to include events from the decay of a resonant ${}^{12}C + {}^{12}C$ final state. Such a measurement would reduce the background from other processes and allow the molecular states to be observed more clearly. To this end the following experiments were performed:

A beam of 140-MeV ¹⁶O⁴⁺ from the Lawrence Berkeley Laboratory 88-in. cyclotron was used to bombard a 620- μ g/cm² natural carbon target and a ¹³C target of 285 μ g/cm² thickness enriched to 99% in ¹³C. α particles were detected in a telescope consisting of a 240- μ m Si ΔE detector and a 5-mm Si(Li) *E* detector. A tantalum absorber foil (90 mg cm²) was placed in front of this telescope to stop heavy ions with $Z \ge 3$. ¹²C and ¹³C ions were detected in either a second ΔE -*E* telescope (32.5- μ m Si ΔE detector and a 400- μ m Si *E* detector) or in the quadrupole-sextupoledipole magnetic spectrometer. Solid angles were limited to 0.36-1.44 msr to ensure adequate resolution in the coincidence spectra.

Since we are studying a three-body final state. there are in general three possible pairs of twobody residual interactions which must be distinguished. Consider the coincident detection of α particles and ¹²C ions produced in the reaction ${}^{13}C({}^{16}O, {}^{12}C\alpha){}^{13}C$. Examples of reaction mechanisms which can produce each of the three finalstate interactions are (a) α transfer leading to unbound states in ${}^{17}O^*$ (the α - ${}^{13}C$ residual interaction). (b) ¹²C transfer leading to unbound states in ${}^{25}Mg$ (the ${}^{12}C - {}^{13}C$ interaction), and (c) excitation of the ¹⁶O projectile to unbound states (the α -¹²C interaction). The final-state interaction which is responsible for any structure in the coincidence spectra may be determined by measuring coincidences at various pairs of angles. For case (a) variation of the α -detection angle should leave the energies of the peaks in the ¹²C energy spectrum unchanged. For case (b) variation of the ¹²C-detection angle should not affect the energies of peaks in the α energy spectrum. In case (c) for a given excitation energy in ${}^{16}O^*$, the relative kinetic energy of the α particle and the 12 C ion should be independent of the angles of observation; specifically, the excitation energy in ¹⁶O* given by

$$E_{x}({}^{16}\text{O*}) = \frac{3}{2} \left[\frac{1}{2} E_{\alpha} + \frac{1}{6} E_{C} - 2(E_{\alpha} E_{C} / 12)^{1/2} \cos(\theta_{\alpha} - \theta_{C}) \right] + 7.16 \text{ MeV}$$
(1)

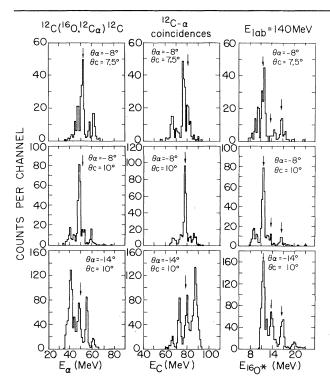


FIG. 1. Coincident counts vs E_{α} , E_{C} , and $E_{16O^{\circ}}$ are shown in columns 1-3. Each row shows a different pair of detector angles. For E_{α} the arrows show the expected position of the strongest peak in the top spectrum, assuming this peak corresponds to a state in ²⁴Mg. For E_{C} , the arrows show the expected position of the strongest peak in the middle spectrum, assuming the peak corresponds to a state in ¹⁶O populated by α transfer. For $E_{16O^{\circ}}$ the arrows indicate states in ¹⁶O at 11.6, 13.1, and 15.8 MeV.

should be independent of θ_{α} and θ_{C} . The above results depend only on kinematics and are, of course, independent of the reaction mechanism leading to the final state.

Data were taken at 22 angle pairs covering 7.5° to 30° in the laboratory for the ¹²C telescope and -4° to -18° for the α telescope. Figure 1 shows typical spectra obtained with the two telescopes and the ¹²C target. Only events in which all three particles emerged in their ground states (Q =-7.16 MeV) are shown. (The total reaction Q is easily calculated from E_{α} and E_{C} .) Analysis of all the data showed that the dominant peaks are not constant in E_{α} or E_{C} as a function of either θ_{α} or θ_{C} . Also shown in Fig. 1 are ¹⁶O* excitation spectra calculated with Eq. (1). The energies of the peaks in these spectra are found to be independent of both θ_{α} and θ_{C} , and the relative angle $\theta_{\alpha} - \theta_{C}$. An analysis of the E_{α} spectra for those events in which one ¹²C emerged in its first excited state resulted in identical conclusions. On the basis of these results we conclude that the coincidence data are dominated by the resonant breakup of the projectile—that is, by inelastic excitation of discrete α -unbound states of ¹⁶O followed by their decay.³ We also observed that the cross section to any particular state in ¹⁶O* oscillates as a function of θ_{α} and $\theta_{\rm C}$. This reflects the diffractive nature of the ¹⁶O* angular distribution.

For a comparison of reactions with ¹²C and ¹³C targets we used the magnetic spectrometer to detect the carbon ions. This had the advantage over the ΔE -E telescope of improved separation of ¹²C and ¹³C ions and reduced count rates at very forward angles. Because the energy bite in the spectrometer is only 24%, two field settings were generally required. The spectra at each field setting were matched after normalization by the integrated charge on the Faraday cup. Data were taken with the spectrometer as far forward as 3° in the laboratory; some measurements were also made with the α telescope on the same side of the beam as the spectrometer.

Figure 2 compares typical spectra obtained with the ¹²C and ¹³C targets. Note that the Qvalue spectra for α -¹²C coincidences and the energy spectra of the α particles show qualitatively similar structures. Analysis of data taken at different angles showed that the coincident yield of α + ¹²C is dominated by the excitation and subsequent decay of discrete states of ¹⁶O* regardless of whether the target is ¹²C or ¹³C.

There are several quantitative differences between the results obtained with the two targets. One prominent difference is in the coincident yield of α + ¹³C observed with the ¹³C target. This is seen in Figs. 2(c) and 2(d) where Q spectra are shown. Although our data are not conclusive in this respect we suspect that the reaction producing α + ¹³C proceeds via single neutron pickup to α -decaying excited states of ¹⁷O. The difference between the results for the ¹³C target and ¹²C target is then naturally explained by the respective Q values for neutron pickup by the projectile (-0.80 and -14.58 MeV).

A second quantitative difference is observed in the relative cross sections for the production of fast α particles in coincidence with carbon ions. The cross sections for the prominent peaks in Figs. 2(g) and 2(h) are larger for the ¹²C target by factors of 1.4 to 1.7; however, these ratios vary with angle. The origin of this behavior is not clear at this time.

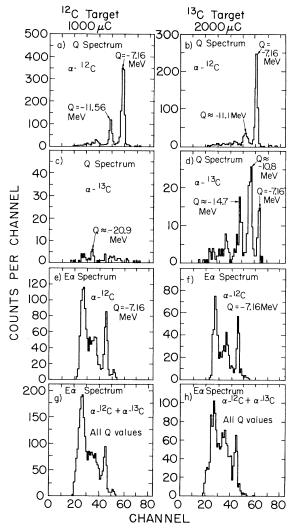


FIG. 2. A comparison of the coincidence data obtained in ¹⁶O induced reactions on ¹²C and ¹³C at θ_{α} = -14.5° and $\theta_{\rm C} = 10^{\circ}$. (a), (b) Total Q spectra for α -¹²C events; (c), (d) Q spectra for α -¹³C events. Channels greater than 40 in spectrum (c) contain mainly random events. (e), (f) α -¹²C events vs E_{α} with Q= -7.16 MeV. (g), (h) All α -¹²C and α -¹³C events vs E_{α} for all Q values.

The inclusive α spectra of Ref. 1 suggest the population of highly excited states in ²⁴Mg and this has been interpreted in terms of resonances in the ¹²C + ¹²C system.¹ The present coincidence experiments do not reveal a ¹²C + ¹²C final-state interaction. There are at least three possible explanations for this.

(i) The structure seen in the α -singles experiments¹ arises from the sequential decay of ¹⁶O*. The states in ¹⁶O* for which we observe a decay to ¹²C(g.s.) + α (which is the most intense mode of

decay) are estimated to be at excitation energies of 10.4, 11.6, 13.1, 15.8, and 19.4 MeV (all ± 0.4 MeV). If we assume that the inelastic scattering of ¹⁶O is strongly forward peaked and take 0° as an average direction for ${}^{16}\mathrm{O}^*$, we calculate lphaparticle energies at $\theta_{1ab} = 7^{\circ}$ of 51.0, 54.9, 59.0, 65.2, and 72.1 MeV (all ± 0.9 MeV) for a beam energy of 145 MeV. Several of these energies correlate with the energies of the structures observed in the singles data of Ref. 1. [A quantitative estimate of the intensity of these peaks in a singles spectrum would require more extensive angular correlations (for example, out of plane measurements) than were possible in the present study.] If this explanation is correct, then the absence of structure in the α -singles spectrum¹ obtained with a ¹³C target must originate in differences in the cross section for producing ${}^{16}O^*$. The higher relative yield of ${}^{16}O^* - {}^{12}C + \alpha$ observed with the ¹²C target would be qualitatively consistent with this.

(ii) The excitation and sequential decay of ¹⁶O* contributes to the smooth background under the structure in the α -singles spectra produced on both the ¹²C and ¹³C targets and thereby obscures any events in the coincidence data arising from molecular resonances. This explanation while also consistent with the present results, has the unfortunate consequence that verification of the reaction mechanism leading to the population of the molecular resonances with use of coincidence techniques, as well as more detailed spectroscopic studies, will be very difficult.

(iii) The levels in ²⁴Mg populated by a twelvenucleon-transfer reaction on a ¹²C target, contrary to the present assumption, have small partial widths for decay to a ¹²C + ¹²C final state and thus do not contribute to the coincidence yield.

In conclusion, the present coincidence measurements do not reveal a ${}^{12}C + {}^{12}C$ final-state interaction. They do show that the excitation of the projectile to discrete excited states above the α -decay threshold is an important contribution to the yield of fast α particles produced in the reactions ${}^{12}C$, ${}^{13}C({}^{16}O, \alpha)$.

This work was supported by the Nuclear Physics Division of the U. S. Department of Energy under Contract No. W-7405-ENG-48.

^(a)Permanent address: Universidad Nacional Autónoma de Instituto de Física, México 20, D. F., Mexico.

^(b)Permanent address: Département de Physique Nucléaire/Basses Energies, Centre d'Etudes Nuclé-

aires de Saclay, F-91190 Gif-sur-Yvette, France.

¹K. Nagatani, T. Shimoda, D. Tanner, R. Tribble, and T. Yamaya, Phys. Rev. Lett. <u>43</u>, 1480 (1979).

²D. A. Bromley, in *Proceedings of the International Conference on Resonances in Heavy Ion Reactions, Hvar, Yugoslavia, 1977, edited by N. Cindro (North-Holland,* Amsterdam, 1978). See also T. M. Cormier *et al.*, Phys. Rev. Lett. 40, 924 (1978).

³We use the terminology of A. Budzanowski, G. Baur, R. Shyam, J. Bojowald, W. Oelert, G. Riepe, M. Rogge, P. Turek, F. Rösel, and D. Trautman, Z. Phys. A <u>293</u>, 293 (1979).

Field-Induced Autoionization in Rare-Gas Absorption Spectra near the Ionization Threshold

B. E. Cole, J. W. Cooper, and E. B. Saloman National Bureau of Standards, Washington, D. C. 20234 (Received 28 April 1980)

The effect of electric fields of up to 22 kV/cm on the absorption cross sections of argon and krypton have been obtained near the ionization limit. In both gases the field-induced cross section below the limit is found to represent the predicted oscillator-strength distribution. In krypton, additional field-induced fine structure appears below the limit.

PACS numbers: 32.80.Dz, 32.60.+i, 32.80.Fb

Luc-Koenig and Bachelier have recently stressed the importance of the concept of oscillator-strength density in interpreting the Stark spectrum of atomic hydrogen near the ionization limit.¹ Since all spectral lines near the ionization limit lose their identity when an electric field is applied, it is appropriate to consider observed resonances as variations in oscillator-strength density rather than as contributions due to specific lines. Using this approach they were able to calculate the spacings of the resonant structure observed in the vicinity of the ionization limit of rubidium by Freeman *et al.*²

For atomic systems other than the hydrogen and alkalis, where the average oscillator strengths near this limit is frequency independent, the situation is much more complicated. Although the zero-field spectral distribution of oscillator strengths is expected to be continuous near the ionization limit,³ it may oscillate over a broad spectral range both below and above the limit. Such behavior is typical of all of the heavier rare gases where the ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$ ionization limits are closely spaced. Variations in oscillatorstrength density are observable above the limit, where they appear as autoionization lines in absorption⁴ and the same distribution of oscillatorstrength density is predicted to extend below the ionization limit,^{5,6} where only a small fraction of the oscillator-strength density is observable as the intensity of spectral lines.

When electric fields are applied, one would expect changes in the observed oscillator-strength distribution near the limit since the field will

lower the ionization potential and thus open up new channels for autoionization in the spectral region below the limit. We find this to be true for argon, krypton, and xenon. Our major results are the following:

(a) For moderate fields (<5 kV/cm) the oscillator strength below the ${}^{2}P_{3/2}$ limit represents the continuation of the same pattern as is observed in the autoionizing region between the ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$ limits.

(b) The oscillator-strength distribution immediately above the ${}^{2}P_{3/2}$ limit is only slightly modified except at high-field strengths (~20 kV/cm).

(c) At high-field strengths fine structure appears near the ionization limit. The spacing of the structure is irregular, field dependent, and does not appear to depend upon the polarization of the absorbed light.

The apparatus used for these measurements is essentially the same as that used for previous studies of field effects on autoionizing resonances.⁷ It consists of an absorption cell of approximately one meter pathlength containing field plates spaced $\frac{1}{8}$ in. (0.3175 cm) apart. This was mounted in back of a high-flux monochromator⁸ attached to the SURF-II electron storage ring. Since the beam emerging from the monochromator is approximately 80% polarized,⁸ data were obtained with the field both parallel and perpendicular to the preferred direction of polarization. Gas pressures in the cell were typically 5-10 mTorr (0.07-0.13 Pa). Transmitted light was detected via a photomultiplier mounted in front of a sodium salicylate coated window at the exit of the absorp-