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Renormalization-group techniques are applied to Ising-model spins placed on the sites
of several self-similar fractal lattices. The resulting critical properties are shown to
vary with the (noninteger) fractal dimensionality D, but also with several topological
factors: ramification, connectivity, lacunarity, etc. For any D =1, there exist systems
with both T, = 0, and 7,> 0; hence a lower critical dimensionality is not defined. The
nonvanishing values of 7, and the critical exponents depend on all these factors.
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Noninteger dimensionalities have recently en-
tered physics from at least two separate direc-
tions: continuous € expansions near an integer
d in the theory of critical phenomena,® and frac-
tals.? The € expansions involve formal analytic
continuations of momentum integrals, e.g., fd“q
*fqd'ldq,‘ or of recursion relations constructed
for d-dimensional hypercubic lattices.® In these
cases, translational invariance is assumed (with-
out actual implementation). The resulting general
belief is that for systems of given symmetry of
the order parameter and interaction range, the
critical properties depend solely on the dimen-
sionality d.* In particular, all Ising models with
short-range interactions and given d=1 are be-
lieved to exhibit identical critical properties,
with the transition temperature 7, decreasing
to zero at the lower critical dimensionality d,=1.
Unfortunately, because of the purely formal char-
acter of the analytic continuations, these beliefs
cannot be tested.

By contrast, fractals® are fully explicitly de-
scribed geometric shapes, which one may view
as “hybrids” between standard (integer d) shapes
such as lines or planes. A fractal’s description

involves several factors that can vary largely
independently of one another: the fractal dimen-
sionality D,® which is usually not an integer, the
topological dimensionality,® the order of ramifi-
cation,” the connectivity @,® the lacunarity,® etc.
Note that fractal lattices are scale invariant, but
not translationally invariant.

The present Letter reports on the first system-
atic study of critical phenomena on fractals,
namely in spin systems carvied by self-similar
fractal lattices.’®* Note that unlike the formal
continuations, fractals are themselves imple-
mented in real physical systems, e.g., perco-
lation clusters.?!! The picture emerging from
our application of the renormalization-group
techniques to suitably varied fractals is more
complex and subtle than the present conventional
view. A lower critical dimensionality is not de-
fined. In fact, the progression between succes-
sive integer dimensionalities can be performed
in diverse ways, involving very different critical
points. As a general rule, Ising systems with
given D have 7.=0 if the minimum order or rami-
fication, R ;,," is finite, and 7,>0 if R ;, is in-
finite.
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More specifically, (A) we analyze the Ising
model on fractals akin to the “Sierpiriski carpet,?
which have an infinite order of ramification and
adjustable 1 <D <2. We show exactly that the
fixed point at 7=0 is stable, from which we in-
fer that 7, >0. We then use an extension of the
Migdal -Kadanoff bond-moving renormalization-
group approach?® to calculate approximate values
for T, and for the correlation-length critical ex-
ponent v [defined via £¢~(7T=T,)™]. Both depend
not only on D, but also on the system’s connec-
tivity® and lacunavity.’ (B) We solve exactly a
number of Ising systems with finite R_;,. For
these, one writes £~¢77, with #=exp(- 2K)
=exp(—2J/k3T), where J is the nearest-neighbor
exchange. We find that v depends on R ;,and on
the ramification’s homogeneity. When R=R ;=2
at all points (no branching), we find v=1/D. Oth-
erwise, v increases with the extent of branching,
and v>1/D. (C)In comparing different examples
with the same D, we find that v increases with
increasing R, ;,, diverging to infinity at some
R, ;i,=R <%, At R,, one has'® £~exp(4/t?)
~exp[A4 exp(4K)].

We hope that our results will stimulate a dis-
cussion of the comparative importance of the di-
verse fractal and topological factors affecting
critical phenomena. In particular, we expect that
our results will lead to a more precise descrip-
tion of the thermal properties of spins on perco-
lating clusters' in terms of these factors.

Generally, we start with a “microscopic” lat-
tice system, with a finite nearest-neighbor dis-
tance. On length scales of interest, which are
much larger than this basic distance, the system
looks self-similar. Ising spins are placed on its
sites, and some assumptions are made on their
(nearest-neighbor) interactions. We then in-
crease the basic length scale by iterating the re-
normalization-group transformation. We studied
the following examples:

Nonbranching Koch curves.—We find T, =0,
‘e.g., for the system shown in Fig. 1(a), which
has® D=1n4/In3 ~1.26 (b=3 and N=4) and R=2 at
every point.” We create a physical model by
placing “spins” on the lattice sites, and allowing
nearest-neighbor interactions not only between
{ab), bc), (cd), and (de), but also between {(bd).
The bond (bd) is not a part of the geometrical
curve, and is not dressed with additional bonds
on smaller length scales [unlike Fig. 1(b); see
below]. Next we define a dedecoration renormal-
ization group,'® by tracing over spins b, ¢, and d,
and adding a new interaction between (af). For
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FIG. 1. (a) Two construction stages of the original
(nonbranching) Koch curve. The broken lines represent
spin interactions which are not part of the self-similar
structure. (b)—(d) Various nonhomogeneous (branching)
Koch curves. (e) Two stages of the Sierpifiski gasket,
constructed by a successive elimination of the shaded
areas.

Ising spins, the exact recursion relation becomes
x’ =x% with x=73(1+ 7)/(1+ 7%) and 7=tanhk. In-
deed, the only fixed points are at 7=0 (K =) or
at T=«(K=0). Linearization near T=0, writing
t'=b% [with ¢=exp(-2K)], yields 1/v=y=1n4/In3
=D. The recursion relation x’=x?% and the re-
sult y=1InN/Ind, hold for all nonbranching Koch
curves with R=2. The familiar one-dimensional
Ising model enters as the special case y=D=1.%°

Branching Koch curves.—The curves of Figs.
1(b), 1(c), and 1(d) are nonhomogeneous, in the
sense that the order of ramification is R=2 at
some points and larger than 2 at other (branching)
points. Figs. 1(b), 1(c), and 1(d) differ by their
dimensionality (D=1n5/1n3, 1n7/In3 and 2, respec-
tively), '* but they all yield the same y=1n2/In3
=~0.63. The reason for this is that the “density”
of branching points is the same for all these
curves.

Since we could replace ¢ by some power of it-
self, the relation £~¢™ is ambiguous. Moreover,
distances on the D-dimensional Koch curves
might be measured in non-Cartesian units, by re-
placing £ by £=£% The result for the nonbranch-
ing Koch curve then becomes é'*e'“‘, as expected
for a “one-dimensional” Ising model. The sur-
prising result is that this no longer holds for the
branching case; in that case it seems that adding
next—nearest-neighbor interactions in a self-sim-
ilar way does affect the critical behavior, unlike
the usual (nonself-similar) cases.

* Sievpiniski gasket.2— For the lattice of Fig.
1(e),'®* D=1n3/In2=1.585 and R=3 or 4 (“quasi-
homogeneity”).” The recursion relation here is

e4K'=(612K+ 3€4K+4)/(€8K+ 4€4K+3), (1)

reducing near 7 =0 to (¢3)’ =¢2+4t4+ ... . Hence
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FIG. 2. Two stages of the Sierpifski carpets with
R=x, b=17, and I =3. (a) Large lacunarity. (b) Small
lacunarity.

» =0, v = and £« exp| 4 exp(4K)].}° Note that a
nonbranching Koch curve with N =3, 5 =2 also has
D =1n3/1n2, but yields y =D. Hence, v is larger
for the larger R and the larger density of branch-
ing points.

We have constructed various fractal curves with
finite R ,;,; all yield T,=0.* This result is con-
sistent with the standard inequalities or entropy
arguments.'®

Sierpiriski carpets.—In the lattices of Fig. 2,

R =, They are constructed by subdividing a
square into b2 subsquares, then cutting out /2 of
these subsquares. Thus, D=1n(b%-12)/Inb2'° and
Q=1n(b -1)/1nb.® D can range from nearly 1 [if
b> (b —=1)] to nearly 2 (if b >1). We first show
exactly that 7> 0 for all these systems. At low
T, the partition function is Z=exp(-E,)[1+g,e "*¥
+0(e"%)], where E, is the ground-state energy
(in units of 23 7) and 6K represents the lowest ex-
cited state, in which one spin near a boundary of
a cutout (shaded area) is flopped. A majority-
rule renormalization group then yields exactly*: 16
Z=7=Ae Fo'[1+g,'e”™ +higher orders], with

m >6. Therefore, the exact asymptotic result
near T =0 is K’ =(m/6)K >K, and the fixed point

T =0 is stable. Since the “paramagnetic” fixed
point, at 7 =, is also always stable, experience
from analogous cases leads us to conclude that
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FIG. 3. Flow diagrams for Sierpifiski carpets with
b=Tand (a) I=5, (b) I =3. 7=tanhK, T, = tanhK,,.
C is the critical point for K = K,,,.

there exists at least one unstable fixed point at a
finite value of T; hence T,>0. Additional quanti-
tative results at 7'> 0 are obtained by approximate
generalized Migdal-Kadanoff recursion relations.
It is now necessary to distinguish between near-
est-neighbor bonds on the boundary of a cutout,
K,, and internal bonds, K. Moving all the bonds
within a dedecorated square to its perimeter and
then decimating?® [taking the eliminated subsquares
to be in the center, Fig. 2(a)l, we find

tanhK’ =tanh’[ (b /- 1)K + 2K, Jtanh’"* (bK),
tanhK’,, =tanh’[1(6 -1 - 2)K +2K,]
' Xtanh®" |36 - DK + K,].  (2)

(When =0, we fall back to the known d =2 re-
sults.)®* Combining analytic and numerical calcu-
lations, Egs. (2) yield flow diagrams exemplified
by Fig. 3. Fig. 3(a) relates to b =7, I =5 (D~1.63,
@=0.36), When K, =0, the flows go from K =«

to K =0, implying 7,=0. The reason is that when
b -1=2, setting K,, =0 lowers the order of ramifi-
cation to a finite value, i,e., R =2 or 3 (without
changing D!). The exponent y near K =« (X, =0)

is y =Inl/Inb. The limit K, == increases the con-
nectivity, and yields a finite 7, characterized by
the unstable fixed point A (Fig. 3).!” Finite values
of K, yield criticality on the line ACB, flowing

to the fixed point B, with y(B)=2 0.34. This line
crosses the diagonal K =K, at C, yielding T, via
tanhK =~ 0.67. Similar flow diagrams arise for
other values of b and ! = — 2. A notable exception
is»=3,1=1(D~1.89, @=0.63), in which case
the critical line reaches the point K, =0, K =,
and the fixed point B occurs at tanhK ~0.,70,
tanhK,~0.02, with y(B)=~0.22, tanhK ,~0.31. For
b —1>2, R remains infinite for K,, =0, and the
critical properties are the same as for finite K,
[flows at criticality go to the fixed point B, Fig.
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3()]. For»=7,1=3 (D~1.90, 9=~0.71), Fig. 3(b)
yields tanhK ~0.19, y(B)=0.52, As a rule, ex-
cept for » =3, we find that both 7, and y =1/v de-
crease with increasing b at fixed » -1, or with
increasing ! at fixed b (i.e., decreasing D and Q).
T, and y also increase with @ for fixed D.*

Finally, we modified the Sierpifiski scheme by
keeping D and @ (i.e., b and ) fixed and decreas-
ing the lacunarity,® as shown in Fig. 2(b). The
resulting flow diagram is very different from Fig.
3(b), and in fact has the shape of Fig. 3(a) [with
tanhK,~0.24, y(B)=~0.46]. The values of 7, and
y decrease, and the line K,, =0 again corresponds
to finite R, i.e., 7, =0.
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