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ac Hopping Conductivity of a One-Dimensional Bond-Percolation Model
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The exact frequency dependence of the ac hopping conductivity of a one-dimensional
chain with random interruptions is obtained. The real and imaginary parts of the ac con-
ductivity are shown to vanish quadratically and linearly, respectively, with frequency at
the static limit. Critical behavior of the ac conductivity. in the limit of no interruptions
is discussed.

PACS numbers: 72.60.+ g, 72.80.Ng

Carrier or exciton transport and spectral diffu-
sion on one-dimensional random chains have been
extensively studied from both theoretical and ex-
perimental view points. ' ' Randomness in the
chain gives rise to localization of carrier eigen-
states. ' Therefore, transport or diffusion on the
chain with sufficient randomness takes place by
hopping from one localized center to another rath-
er than by propagation of Bloch waves. If there
exist impurities or defects in the chain, they may
interrupt the hopping path and the dc conductivity
will vanish. ac conductivity at nonzero frequen-
cies, however, can be nonvanishing even if many
interruptions of the hopping channel exist, since
the carrier can always respond to an ac field.
The frequency dependence of the ac conductivity
and diffusion constant is determined by the dis-
tribution of random interruptions.

The bond-percolation model is one of the most
simplified models which describe the effeet men-
tioned above. In the present paper, we solve ex-
actly the bond-percolation model for hopping con-
duction on a one-dimensional chain, where the
nearest-neighbor hopping rate of a bond is broken
at random with probability l. -P. If we regard a
set of sites that are connected to each other by un-
broken bonds as a cluster, then the chain is di-
vided into a set of finite clusters except for the
limiting case p =1. As we shall see below, the
ac conductivity of the whole system is given by a
weighted average of the conductivity associated
with finite clusters and each finite-cluster prob-
lem is solved rigorously. It will be shown that at

the static limit the real and imaginary parts of
the ac conductivity vanish quadratically and linear-
ly, respectively, with frequency, and at the high
frequencies both approach their own plateau val-
ues.

Recently, Heinrichs' investigated the same
problem. However, except for the pair case, he
treats finite clusters using periodic boundary
conditions (PBC) as an approximation. His PBC
result for a finite cluster shows quite a large de-
viation over some frequency range from our exact
solution for properly terminated clusters.

As shown by Scher and Lax, ' the hopping conduc-
tivity for one-dimensional system can be reduced
to

o(ur) = (ne'/kT)D(+),

where the generalized diffusion constant D(~) is
given by

2

D( ) = —g (x x,)'P(x, iv-~x, )f(x,}. (2)
Xy Xo

Here, n is the density of effective carriers, T is
the absolute temperature, ~ is the frequency, x
denotes a site position in the chain, and f(x,) the
equilibrium distribution function for the initial
carrier position will, in this paper, be assumed
to be I/I, where I is the total number of sites.
P(x,ulx, ) is the Laplace transform of the transi-
tion probability P(x, tlx„0) which denotes the
probability of finding a carrier at site x at time
t if it started at site x, at time t =0. The Laplace
transform P is assumed to obey the usual random-
walk equation

(u+ ~...„+~„.„,)P(x,ulx, ) —I'll, „„P(x+I,u(x, ) —W„„,P (x —I,u( x,) = O„„
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FIG. 2. The dependence of imaginary part of D(u)) on
frequency for various values of p.
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FIG. 1. The dependence of real part of D(~) on fre-
quency for various values of p.

~2 N

D„((u) = — Q(x —x,)'P(x, i(d!x,).
X$ XQ

The jump rate W„„ from x' to x is zero unless
x and x' are nearest neighbors and is assumed to
satisfy S'„,+, = W„+, „.

The bond-percolation model is characterized
by a probability function of the jump rate W„„„
such that

P (W„„+,}
=p6(W„„,—W ) + (1 -p)5(W„~„,)

with a nonzero constant jump rate 8'„namely,
each bond is broken at random with probability 1
-p. If p& 1, the chain is composed of a. set of

segments; each segment is a cluster of sites
which are connected to each other by unbroken
bonds.

Now it is clear that P(x, t lx„0) and hence P(x,
ul x,) are zero unless x and x, belong to the same
cluster. Therefore, E(l. (2) can be reduced to a
sum over clusters of different sizes:

D((u) = QNC~D„((d)
N=1

N-1

The probability of finding a cluster of size N (N
—1 bonds terminated by a broken bond at each
end) is given by

Cg =(1-p)'p

Thus, the complete diffusion constant is expressed
as a weighted average of the finite-cluster diffu-
sion constants.

For a finite system, E(I. (3) is expressed in a
compact with use of vector ar.d matrix notations
as

AP(u, xo) = 6(xo),

where A„„,=(u+2W, )5„~„,—W,(5„,„,+ (i„,„,)

+ (u+ W,)&„„ for 2 &x &N —1 and 1 &x' &N, and
[&(u,x.)]„=P(x,ulx, ), [~(x.)]„=&„„.Since the
eigenvector and the eigenvalue of the N xN tridi-
agonal matrix A are given by (C,C, , ... , C(~ » )
andu+2W, (1 —C, ), respectively, with C =cosmic/
2N and m=0, 1, ... ,N —1, it is easy to see that

P(x,ulx, )=(1/u+2 QC(,„~ C(,„, ,)„/[u+2W (1 —C )])/N.
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TABLE I. The low-frequency behavior of L)(&u):

D(+) =Ace +BQi+0(e ).
TABLE II. The high-frequency behavior of D(u):

D{u) =p —A'/22+ (8'/2)i+0(2 3).

Method
D(u)

Method B'

CTRW
CPA

Exact

p(4- 3p) /4(1 —p)
'

p(2- p)/8(1 -p)'
p{1+p)'/4(1- p)'

p(2-p)/2(1-P)'
p(2 —p) /4(1- p)

p/2 (1 —p)
2

CTRW
CPA

Exact

p(1 —p)
2p(1- p)(2-p)

2p(1 —p)

p(1 —p)
2p(1 —p)
2p(1 —p)

Insertion of this expression into (6) and some elementary algebraic manipulations yield

D„(v) N' —1 . Q' -'
[1 ( 1) ] (I+I-

a'W, 12 2N', (I g, ) [2(1 g )+;g]
(1+4/i( )"

+
N z+ +1 z +1

(1Oa,)

(lob)

where Co=co/W„z, =[(i&)' '+(4+i&)' ']/2, and a
denotes the lattice constant of the chain. The dif-
fusion constant of a finite chain D„(e) behaves as

D„((u)- (N —1)(o /120+ (N2 —1)i(o/12 (11a)

!creases to zero after reaching a maximum. Ex-
plicit behavior of D(&u) at the high-frequency limit
reads as

at the low-frequency limit and

D„(ar)- 1 —1/N —2/¹'+2i/NS (11b)

2p(1 -p), 2P(1 -p),. (14)

at the high-frequency limit.
Now, the normalized ac conductivity or the nor-

malized diffusion constant of the total system
D(u)=—kTo(~)/(ne'a'W, ) =D(v)/a'W, can be easily
evaluated numerically using Eqs. (5), (7), and

(10). Figures 1 and 2 show the frequency depen-
dence of real and imaginary part of D(&u) for vari-
ous values of p. The diffusion constant and hence
ac conductivity are always zero at the static lim-
it except when P =1 as physically expected; if P
& 1, ReD(&u) vanishes quadratically with Pu and

ImD(~) vanishes linearly. Explicitly, the fre-
quency dependence of D(w) at the static limit is
given by

O
)C
LLJ

2

I

0.5
P

p(1+0)'@ p
4(1-p)' 2(1 — )'

It follows that, at the percolation point (p, =1),
D(v) shows the following critical behaviors:

Iim[ReD(~)/a&'] -(p, -p) ',
Q) ~Q

(13a)

Iim[lmD(a))/(o] ™(p,-P) '.
Q

(13b)

As the frequency is increased, ReD(&u) also in-
creases and eventually reaches its high-frequency
limit, while ImD(~) first increases and then de-
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FIG. 3. A comparison of the relative merits of the
various .approximations in the low-frequency regime:
BAO, work of Bernasconi, Alexander, and Orbach (Ref.
2); H, work of Heinrichs (Refs. 7); CTRW, work of
Scher and Lax (Ref. 8); CPA, work of Odagaki and Lax
(Ref. 9). A. and B are defined in Table I.
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The principal purpose of the present calcula-
tion was to provide an exact solution of a percola-
tion conducting problem as a standard against
which approximate methods can be tested.

A comparison between the Scher-I ax continu-
ous-time random walk (CTRW), ' the coherent-
potential approximation (CPA), ' and the exact re-
sults of this paper for the bond-percolation mod-
el is presented in Table I for the low-frequency
behavior and in Table II for the high-frequency
behavior. The CTR% and CPA methods are both
found to be qualitatively correct in their depen-
dence on frequency and their singular dependence
onp, but quantitative differences with respect to
each other and the exact solution are shown to be
significant. Figure 3 shows the relative merits
of the various approximations" ' in the low-fre-
quency regime, where the ratio of A/A, „„,and

8/8, „„,(2 and 8 are defined in Table I) are plot-
ted versus p.
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