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This Letter presents an approximate closed-form solution to the density-functional
theory for the surface tension and surface width of simple liquids. The results for both
are in excellent agreement with experiments on Ar over wide range of temperature and
density. The theory is extended via an ion density-functional formalism to simple metals.
Good agreement is obtained for the surface tensions of ten liquid metals and for the sur-

face width of liquid Hg.

PACS numbers:

The thermodynamics and structure of liquid-
vapor interfaces are subjects of intensive experi-
mental and theoretical interest.! Although vari-
ous theoretical methods have obtained very good
agreement with experiment for the surface ten-
sion of liquid Ar,™? it is commonly believed that
the surface free energies of liquid metals are
dominated by electronic effects and that, there-
fore, theoretical techniques which are success-
ful in treating simple nonmetallic surfaces can-
not be used for metals. The work of Evans and
Kumaravadivel,® which extends the theory of Lang
and Kohn* to liquid metals, does lead to agree-
ment with the surface tension in several cases
but the predicted widths for the transition profile
are small compared with those of most other

68.10.Cr, 61.25.Mv, 61.25.Bi

fluids.

In this Letter we present a simple and quite
successful theory for the surface tension 7 and
width 7 of simple liquids, botk metallic and non-
metallic. It involves a number of approximations
which allow one to solve a density-functional
theory in closed form and obtain simple expres-
sions for 7 and I. The results for both are in ex-
cellent agreement with experiment for liquid Ar
over wide range of temperature and reproduce
the scaling results of Fisk and Widom.® The re-
sults for the surface tensions of liquid metals are
in good agreement with experiment, for all met-
als studied. The surface widths emerging from
the calculations are of the order of one to two
atomic layers in all cases and for Hg, the one
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metal for which an experimental width is available, are in excellent agreement with the results of Lu

and Rice.®

The basis of our method is the following expression for the Helmholtz free energy of an inhomogene-

ous classical fluid? of density n(r):

Fn(r)]= J"ds'rf(n(l*‘)H %kBTJ‘dsrd%’C(IT— ;) n(@) -n(r))?. (1)

Here f(n(r)) is the free-energy density, T the absolute temperature, and C(F, n) the direct correlation
function at some intermediate density n {for example, n=i|n(r) +n(r’)]}. This is the classical analog
of a treatment suggested by Hohenberg and Kohn’ for the inhomogeneous electron gas. To apply (1) to
the present case, we have expanded x(z) in a Taylor series so that the last term in (1) can be expressed
in terms of the density gradient dn/dz. The surface tension becomes

7= " dd f(n(2)) - pn+ P+ JK'(ul2)) (dn/dz)dz,

where K'(n) ={§-kBTj:d3rrzc(r; n), P is the pres-
sure, and pu is the chemical potential.

While there exist reasonably successful theo-
ries for the “grand potential” Q=f(n) — un+P
near the equilibrium liquid density, extrapolation
to the vapor phase is much more difficult espe-
cially for liquid metals, since it would require
passing through an intermediate region where
there is, presumably, a metal-nonmetal transi-
tion. We have, therefore, fitted Q(n) to experi-
ment by expanding it in the form Q(n) =a, - a,n’?
+amn', where n’=n-5(n;+n,), n, and n, being
the equilibrium densities of the liquid and vapor
phase. By requiring that Q(n) have a minimum at
the observed liquid density and reproduce the
measured liquid compressibility K,;, we obtain
a,=K, '/4n?, a,=K,;"'/[2n2(n,-n,)?] and a,=a,?/
4a,. Note that if a, (T - T), where T, is the
liquid-gas critical temperature, this would be a
standard Ginzburg-Landau expansion; by fitting
a, and a, in the manner just described, we effec-
tively produce an expansion which is adequate far
outside the critical region. If K’ is assumed to be
a constant (evaluated at the density where the
gradient is maximum), then (2) is minimized by
a density of the form n(z) =3(n,+n,) + 3(n, - n,)

X tanh(w~'z), with

w=2V2n, (K K')2 : (3)
and the corresponding surface tension
_ 2 1 \1/2
s L ln=n)? KT\ @)
32 n, K

The coefficient K’ in (3) and (4) is proportional
to the fourth moment of the direct correlation C.
We have approximated C as follows: C(r;n)
=Cpe(7;n) for » <o, and —V(r; n)/kT for v >0,,,
where C, (7; n) is the direct correlation function
for a fluid of hard spheres of diameter o,,, as
evaluated in the Percus-Yevick approximation®
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(2)

l and V(#; n) is the pair potential of the liquid. The

form assumed for the attractive tail correction
is exact in the high-temperature and low-density
limit; even at lower temperatures, it is in good
accord with the results of machine calculations,®
The hard-core diameter 0,, was chosen as the
smallest interatomic separation at which the pair
potential equals 3% sT; other reasonable prescrip-
tion led to similar results for 7 and w.

Combining Eqgs. (3) and (4) gives

w=12[n2/(n,-n,)?]| 7K, , (5

independent of any approximations used for K’.
Equation (5) can be viewed as a phenomenological
relation from which w can be calculated given the
measured values of K., n,, n,, and 7.

We remark that Eq. (4) has the same form as
that of Fisk and Widom,® first derived from scal-
ing arguments. By introducing critical exponents
with ¢= [(T - T.)/T,| where T, is the critical
temperature, namely (n,-n,)~t8 K, ~t7, 7~¢t"
and w~¢"", we obtain the Widom exponent rela-
tions p+v=28+y and K’'~¢?72" from Eqs. (5) and
(3).

We have calculated the gradient coefficient K’
for the case of liquid argon by assuming a Len-
nard-Jones pair potential {V(r) =4¢€[(0/7)*2 - (o/
7)®]} with €=119.8°K and 0=3,405 A, using num-
erical integration, K’ is weakly density and tem-
perature dependent and varies by less than a few
percent over the temperature and density range
congidered. At each temperature K’ is evaluated
at half the liquid density with »n,, »,, and K,
taken from experiment.’® The result for surface
tension is compared with Monte Carlo results in
Fig. 1. The agreement between theory and Monte
Carlo''™ " results is very good but there is a sys-
tematic deviation from the surface tension of
liquid argon.' This is a reflection of the inade-
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FIG. 1. Surface tension of liquid Ar vs temperature.
Triangles: Monte-Carlo results from Refs. 11, 12, 13,
and 15. Full circles: present work with Eq. (5) and
€=119.8 K, 0=3.405 A. Squares: present work scaled
to experiment at one point to correct for three-body
forces. Full curve: experiment (Ref. 14).

quacy ™' *® of the Lennard-Jones potential in de-
scribing the surface properties of argon and is
most likely due to three-body forces. We have
accounted for these in an approximate way by re-
scaling K’ and hence 7 by a constant factor of
0.83 over the temperature and density range con-
sidered. The agreement with experiment is then
excellent. This scaling factor is in agreement
with perturbation calculations®® of the effects of
three-body forces which suggest a correction fac-
tor to 7 of 0.8.

Recently the 10%-90%width of the surface pro-
file of liquid Ar has been measured by Beaglehole'®
at 90 °K and 120 °K to be 7.9+0.5 Aand 15.2+1 A.
From Eq. (5) we get a 10%-90% width of 2w,,_g,
~2.2n,%(n, —n,)"2 -127K ; which gives 7.45 A and
11.85 A at 90 °K and 120°K, using experimental
values of K, and 7. This is very good agree-
ment especially considering the uncertainties in
the interpretation of the experimental data.'®

To apply our theory to liquid metals near melt-
ing, we invoke the adiabatic approximation,’
which allows us to reduce the two-component elec-
tron-ion plasma, via many-body perturbation
theory, to a system of classical ions interacting
with an effective density-dependent ion-ion poten-

tial. We have computed V(r;n) according to the
standard prescription,'” using an empty-core
pseudopotential’® and including exchange-correla-
tion corrections via the Hubbard form® of the
irreducible polarization kernel. Unlike Ar, the
effective pair potentials of liquid metals are
strongly density dependent.®® We have, therefore,
evaluated the gradient coefficient K’ at n = 3(n, +n)
~4n,;, at which the gradient of the profile is maxi-
mum, so that the gradient contribution to the free
energy should be dominated by this density.

The results for 7 are listed in Table I. In all
cases but that of Li theory and experiment agree
to within 30%, even though the experimental 7’s
themselves vary by more than an order of mag-
nitude. We emphasize that there are 7o adjust-
able parameters in the theory. The pseudopoten-
tial parameters are all taken from the literature®®
and are based on various other experiments, and
n, and K, are experimental®' numbers. The Ta-
ble suggests that we have systematically under-
estimated K’ somewhat. Most likely either (i)
the attractive part of the pair potential is too
weak, on account of insufficiently accurate ex-
change-correlation corrections, or (ii) our meth-
od of computing the tail correction to C(»;n) gives
too small a positive contribution to K’ (an explicit
solution of the Percus-Yevick equation? probably
would lead to a stronger attractive tail and hence
a larger K’). Furthermore, the Li result would
no doubt be improved by taking into account non-
local or three-body effects; we have made no
attempts at any such adjustment. We have found
it crucial, however, to calculate C(r,n) at n=13n,.
If it is evaluated at the full liquid density, 7 is
usually too low; in contrast to Ar, the altered
(density-dependent) screening and corresponding-
ly deeper potential well for pseudoatoms near the
surface is evidently of prime importance in deter-
mining 7 for liquid metals.

The width of the surface profile of Hg has been
measured recently by Lu and Rice® at room tem-
perature (T =298 °K) to be 2w=5.6+0.5 A, much
wider than the prediction of Allen and Rice?? of
2.5 A using a theory based on the jellium model.
Our Eq. (5) gives 2w=4.54 A at 238 °K with use of
the values 7=498 dyn/cm, K,=3.8x10"'2 cm?/dyn
and n,=0,041 A~%%' If 7, K, n,, and n, were
available experimentally at 298 °K, where w is ex-
pected to be larger, even better agreement is like-
ly.

The success of the present theory for simple
liquid metals suggests that many-body perturba-
tion theory is adequately convergent for liquid-
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TABLE I. Comparison of the theoretical T’s with experiments. There

are no adjustable parameters in the theory.

Temper-

ature K2 Re®  K'/ap Texpt. L Teneorl® wd
(K) (10”2 em?/dyn) (@)  (10°K) (a.u.) (@)
Li* 452 9.3 1.40 0.0867 398 [242] 5.11
Na* 371 18.6 1.69  0.228 191 [151.6] 6.39

Na* 452 21.0 1.69  0.242 «++ [143.8]°
K* 337 38.2 2.226 0.579 115 [88] 7.63
Rb* 312 49.3 2.4 0.792 85 [74] 8.28
cs* 302 68.8 2.62 1.02 70 [57] 8.91
Mg*? 924 4.0 1.38  0.154 559 [436] 3.96
Zn*? 693 2.5 1.27  0.0805 782 [612] 3.47
cd*? 594 3.2 1.405 0.139 570 [504] 3.66
Al%3 914 2.42 1.117 0.12 914 [666] 3.66
Pb*t 600 3.49 1.48 0.362 468 [563] 4,46

4From Ref. 21.

bEmpt_y—core radius in atomic units, from Ref. 20.

‘From Eq. (4).
dWith use of Eq. 3).

€With 7/dT)cypr == 0.1 dyn/cm*K and (@7/dT) pey == 0.09 dyn/cm* K.

metal surfaces. Since our calculated (and the
experimental) surface widths are reasonably
large (1-2 atomic layers), the liquid surface is
apparently a much weaker perturbation on the
electron gas than is the much sharper solid sur-
face. Indeed, Allen and Rice?®® find that the elec-
tron gas will leak out of this “smeared jellium”
to a much lesser extent than in the solid, thus
justifying the use of perturbation theory. In real-
ity, three-body forces undoubtedly play a role in
liquid metals near the surface, just as in liquid
Ar. But since reasonable results are obtained at
second order, the present theory may be useful
in estimating the widths of metallic surfaces, as
well as for other problems, such as the inter-
facial tensions of phase-separated liquid alloys.

We are grateful for support of the National
Science Foundation under Grant No. DMR 78-
711298.
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