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Ordering of the Face-Centered-Cubic Lattice with Nearest-Neighbor Interaction

K. Binder
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(Received 25 March 1980)

The phase diagram of an Ising fcc antiferromagnet in a field is investigated by a study
of the ground state and Monte Carlo simulation of a lattice with 16384 sites. At the criti-
cal field between the two ordered" phases, the disordered phase is stable down to zero
temperature due to frustration" effects. The corresponding alloy phase diagram dis-
agrees with all previous calculations. Order parameters and internal energy are briefly
compared to experimental data on the Cu-Au system.

PACS numbers: 64.70.Kb, 05.50.+q

Understanding the phase transitions of face-
centered-cubic Ising lattices with antif erromag-
netic nearest-neighbor exchange J (Hamiltonian
ac= —O'QS,.S, —HQS, , S, =+ 1) has been a long-
standing problem. ' ' At zero magnetic field, the
"ordered" phase is very degenerate' and has only
two-dimensional long-range order, ' vanishing at
a first-order transition. ' Nonzero fields have
been studied in the context of the equivalent Ising
models for binary AB alloys. " Many ordered
phases (or their mixtures) are stable in the ground
state. ' Phase-diagram calculations' "ignored
the degeneracy treating only three ordered phases
(AP,AB,AB,), as occur in Cu-Au. " The results
heavily depend on the approximations (Fig. 1):
while in molecular-field (MF) theory' all phases
extend to a multicritical point, Bethe's method"
does not predict any ordering at all. The quasi-
chemical method' and Kikuchi's cluster varia-
tion' " again yield very different answers, and
it seems crucial to establish the accuracy of
these approximations. There are attempts to
make the model more realistic by including four-
body'" or next-nearest-neighbor interactions. "
This approach is seriously hampered by the un-
certainty about its accuracy. In addition, theories
for Au-Cu including electronic effects' were com-
pared to the Ising theories' '~again the compari-
son is doubtful because it is unclear which fea-
tures are due to the Ising model and which are
due to shortcomings of the approximations.

Here I try to fill in this gap by Monte Carlo
simulations. ' ' Since there is long-range order
in two-dimensional planes only, the number of
sites in a plane must be large, not only the total
system. I hence use lattices of 16384 or 13500
sites, about eight times more than the most re-
cent related work, ' and periodic boundary condi-
tions. As initial conditions we take fully aligned
states of the various antiferromagnetic struc
tures (or the ferromagnetic state). Times of 180

to 900 Monte Carlo steps/spin are in most cases
sufficient to reach equilibrium. Close to the
phase transitions careful analysis of time-depen-
dent behavior is needed to eliminate hysteresis.

The resulting Monte Carlo phase diagram is
shown in Fig. 2 (the error is given by the size of
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FIG. 1. Temperature-concentration phase diagram
of a binary alloy AB at the fcc lattice according to the
Bragg-Williams approximation f (a), Ref. 6], the quasi-
chemical approximation l (b), Ref. 7], and the cluster-
variation (CV) method [(c), Ref. 11]. Three ordered
phases (A3B, AB, AB&) are indicated.
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FIG. 2. Monte-Carlo phase diagram of the fcc anti-
ferromagnet in. a field (lower part) and of the corre-
sponding alloy model (upper part) .

the points or smaller). It disagrees with all pre-
vious approaches (Fig. 1) as it predicts that trip-
le points occur (at about c~ =—', , —', ) at zero temper-
ature. The pr'edicted critical temperatures of
the first-order transitions at stoichiometric com-
position" (AP, k~T, /I J I

= 1.86; AB, k~ T,/I J I = 1.76)
are a few percent less than those of the cluster
variation" (AB, kBT,/I JI = 1.89) but distinctly high-
er than that of Ref. 7 (AB,kBT,/I J1=1.46). For
Cu-Au the phase diagram has the topology of Fig.
l(c), but is not symmetric around c~ =0.5. Such
an asymmetry is expected, since due to lattice
expansion the effective interaction J must depend
both on T and on c~.""Hence from Fig. 1(c)
one could conclude that the effective interaction
responsible for the ordering is nearest-neighbor,
and this work was used to compare with theories
including electronic effects. '4 From the more
accurate Fig. 2, however, I conclude that a J
depending on c~ and T can only distort the dia-
gram but cannot change its topology, and hence
interactions to more distant neighbors are needed
to reproduce the Au-Cu phase diagram. This con-
clusion agrees with the MF analysis of diffuse

scattering in the disordered phase. " Deducing
interaction constants by using MF theory is inac-
curate also, since the MF phase diagram fails
[Fig. 1(a)]. Hence a comparison of the experi-
ments to more accurate Monte Carlo results on
diffuse scattering is needed and will be given else-
where, for more realistic interactions. "

Apart from the structures shown in Figs. 1 and
2 other stoichiometric arrangements are ground-
state structures, like an A p structure. '" For
the temperatures studied (kq T/I J I

~ 0.3) the AP
structure is unstable, however. I suggest that
this structure (as well as AP, AP, AP» etc.4')
does not occur for T &0: Consider the magnetic
representation, where the ground-state energies
are UAF/IJI = —2 (independent of H, corresponds
to AB), U, /I J I= —2H/3I JI+2 (AP), U~/I J I

= —3H/
5IJ I+~6 (AP), U, /I JI= —H/2IJ I (AP), U, /I JI
= -H/3 I J I

——,
' (AP), etc. While the antiferromag-

net is the ground state for 0 ~H - H„= 4I Jl, the
structure with one sublattice down spins, three
sublattice up spins is the ground state for B„- II ~H„= 12 I JI, from where on the ground state
is ferromagnetic. The structures corresponding
to AP, AP are ground states only right at H,»
AP, AP, at H„. At these "multiphase points""
the degeneracy is much higher than in the AB and

AP phases. In the AP phase, antiferromagnetic
and ferromagnetic(square lattices alternate, with
no correlations be/bveen spins in different anti-
ferromagnetic planes. The ground-state entropy
is zero, just as in the antiferromagnetic case. '
At the critical fields, however, the T = 0 entropy
is finite: Consider, e.g. , atH„ two neighboring
fcc cells, with down spins at the corners and up
spins otherwise. There is no energy cost for
overturning the spin at the center of the square
joining the cells. As this spin does not interact
with any spins outside the two cells, the number
of "loose spins" is proportional to the system
size. . The antiferromagnetic planes loose their
orderthe, ir average magnetization/spin is MAF
= ——,', implying a total magnetization of ~ =4, i.e. ,
c~ =—', as indicated by the simulation. Clearly, it
is interesting to improve this crude argument by
studying the spin correlations in this highly "frus-
trated" model. Understanding such periodic sys-
tems with compensating interactions has become
a major tool for spin-glass theories. "

This "frustration effect" is not just academic
but also shows. up in the short-range order seen
at finite temperatures, in Fig. 3. Already at T
& T, (c~) a shallow minimum develops in the Cow-
ley' parameter l&,I, while lo. ,l increases at the
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FIG. 4. Internal energy plotted vs temperature for

three compositions. In the stoichiometric cases, pre-
vious theories (Refs. 9, 14) and Cu-Au data (Ref. 26)
are included (notation as in Fig, 3).

FIG. 3. Variation of the Cowley short-range order
(SRO) parameter o,'~ with concentration (upper part) and
plot of ~ and long-range order parameter (LRO) P vs
temperature at &I, =p (lower part). Full curves are the
Monte Carlo (MC) results; broken curves, the CV
method (Ref. 9); dash-dotted curve, the Kittler-Falicov
theory (Ref. 14); dots, data for AuCu3 (Ref. 25).

needed to describe Cu-Au alloys.
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ordering compositions. It is also seen that for
c~ =~ the Monte Carlo data agree slightly better
with Cu,Au data," than previous work. " In view
of the very different phase diagram (Fig. 2) this
agreement anyhow is surprising. Figure 4 shows
that the ordering energy ~U deviates distinctly
from the data, ~ as expected, since a nearest-
neighbor model should not be sufficient. Figures
2 and 3 suggest that a study of the ordering at
off-stoichiometric compositions should be a more
stringent tool to check the effects of interaction
parameters, as well as approximative theories.

In conclusion, I found serious deficiencies in
previous studies of ordering on fcc lattices like
the cluster-variation method, which did not prop
erly take care of "frustration" effects; forces
of longer range than just nearest neighbor are
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Roughening Transition in the 4He Solid-Superfluid Interface
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Principal planes of the He solid-superfluid interface are expected to undergo roughen-
ing transitions at temperatures of about 1 K. An experiment is described in which two
such transitions were observed in the hcp-superfluid interface: first for the basal plane
at 1.08 K and second for an orthogonal face at 0.85 K.

PACS numbers: 68.45.-v, 67.80.-s, 67.40.-w

The roughening transition (RT) is a theoretical
concept, known to apply to certain Ising models, '
and to computer simulations of crystal growth. "
In this Letter we discuss the applicability of the
RT to a real physical system: the ~He solid-su-
perfluid interface. We report the observation of
morphological transitions in 'He crystals at 1.08
and 0.85 K which, we argue, are RT's. Parshin
and his co-workers ' have argued that the inter-
face in this system is always rough, but their
view is contrary to evidence presented here (and
by Landau et aP) Balibar. ' has independently pro-
posed the existence of a RT in the system.

The roughening temperature, T~, is character-
ized by the vanishing of the step energy. "Above
T„ the interface fluctuates macroscopically, and
in the thermodynamic limit, translation invari-
ance is restored. ' Unfortunately, this aspect of
the RT is not expected to be observable in prac-
tice. Fluctuations in ordinary macroscopic sys-
tems are microscopic; for the two-dimensional
interface, the mean square amplitude fluctuation
is of order lnN, where N is the number of lattice
points in the interface.

The interf ace is modeled by a two-dimensional
(2D) lattice Hamiltonian with discrete, unbounded
Ising spin Z: the vertical coordinate of the inter-
face. A capillary-wave Hamiltonian' for the in-
terface is

H =Q-,. f1+[hZ(i)]'}'I'fO,Q+ (pp'/M')(Vg)'].

Here, P is the superfluid field, p, its density, V

the discrete gradient, 0 the area of the 2D unit
cell, and i a lattice bond. The term proportional
to o', (a coupling constant) represents the energy
density of the boundary of the solid, and the term
proportional to@' is the energy density of the su-
perfj. uid layer near the interface io, ii In the low
est approximation the ( field integrates out. Simi-
lar conclusions hold for the Villain model" and
for other models" of the interface. The surface
tension is the free energy of the Hamiltonian H.

The specific choice of the interface Hamiltonian
is of little importance here since the Kosterlitz-
Thouless roughening transition' is a general fea-
ture of 20 models whose Hamiltonians are invari-
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