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ity a nonlocal potential which could fit neutron
elastic scattering data in the energy range from
0.4 to 24 MeV and where the optical-model param-
eters were energy independent. This is, of
course, a remarkable result since we know that
the absorption, for instance, is changing quite
dramatically by going from 0.4 to 24 MeV inci-
dent projectile energy. We believe that these
findings of Perey and Buck strongly support our
result that there exists a nonlocal potential,
which is not explicitly energy-dependent, which
describes elastic nucleon scattering in a wide en-
ergy range. The theory presented in this paper
may serve as a convenient tool in deriving such

a potential. Actual calculation of an energy-inde-
pendent optical-model potential as outlined in this
paper is in progress. ;
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A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field
is presented Contrary to previous work the dynamical variables are the physical variables,
P, v B and s, which form a noncanonical set. A Poisson bracket which satisfies the
Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where
the dynamical variables are the spatial Fourier coefficients of the fluid variables.

PACS numbers:

Several advantages may be gained from expres-
sing a set of equations in Hamiltonian form. In
addition to their formal elegance, Hamiltonian
systems possess Poincaré invariants that influ-
ence the dispersion of an ensemble of systems
with clustered initial conditions. A manifestly
Hamiltonian formulation of a given problem makes
it easier to find those approximations that pre-
serve the Hamiltonian character. Here we pre-
sent such a formulation of hydrodynamics and
magnetohydrodynamics.
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Hamiltonian systems are most elegant when ex-
pressed in canonical coordinates. Hydrodynam-
ics is most usefully expressed in Eulerian vari-
ables. These two desiderata conflict. In prac-
tice, the penalty paid for adopting noncanonical
coordinates is not severe, so that branch of the
dichotomy is pursued here.

Previously, the equations of hydrodynamics®
and magnetohydrodynamics,? in both Eulerian and
Lagrangian form, have been shown to arise from
a suitable Hamilton’s principle. Such a Lagrang-
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ian density formulation is the natural starting
place for derivation of a Hamiltonian density de-
scription.® Typically, the Euler-Lagrange equa-
tion is the fluid equation of motion; the remain-
ing fluid equations have the role of constraints.
A Hamiltonian density formulation obtained by
Legendre transformation necessarily embodies
this division of roles. Alternatively, Hamilton-
ian-type equations have been given directly for a
fluid® and for ideal magnetohydrodynamics.’ In
these formulations, Clebsch or other nonphysical
variables are necessary and entropy convection
is not included. Our formulation departs from
previous work in that all of the fluid equations
are, in principle, placed on equal footing; fur-
ther, the dynamical variables are the physical
variables. The fluid equations, including entropy
convection and (but not necessarily) the Maxwell
induction equation, are obtained in Poisson-brack-
et form; the Hamiltonian density is the energy
density of the fluid. The physical variables are
noncanonical; this results in alteration of the
usual Poisson bracket. The use of noncanonical
variables has proven to be fruitful for Hamilton-
ian systems® and a Poisson bracket similar to
ours has been used to express the Korteweg-
de Vries equation as a Hamiltonian system.”8

In the following, we obtain three essentially
equivalent forms for the Poisson bracket. The
first, Eq. (6), is expressed in terms of the usual
physical variables. The second, Eq. (9), use
conserved densities as variables. This form
possesses greater symmetry, and facilitates
Fourier transformation. In the last form, Eq.
(14), the dynamical variables are spatial Fourier
coefficients.

‘We wish to cast the following set of equations
into Hamiltonian form:

V== V@?/2) + X (VXY)

P71V ,) +p” (Y XB)XB, (1)

py ==V (oV), ' @
B, =Vx({xB), (3)
S;==V-Vs. (4)

Equation (1) is the hydrodynamic force balance
equation for a fluid with density p and velocity v,
with the addition of the magnetic body force term
JxB. We have eliminated J by making use of
Ampere’s law: J=vxB. The internal energy per
unit mass, U(p,s), is a prescribed function of p

and the entropy per unit mass,® s. The intensive
variables, pressure p and temperature T, are
obtained from this function p =p*U, and T =U .
Equation (2) is mass conservation. Equation (3)
is the Maxwell induction equation with the electric
field eliminated by Ohm’s law: E +¥xB =0. Here
infinite conductivity is assumed. Equation (4) ex-
presses entropy convection; heat flow is assumed
to vanish. The equation VB =0 enters our for-
mulation only as an initial condition.

The energy density of a fluid described by Egs.
(1)-(4) is H =3pv% +pU(p,s) +3B?, where 3pv? is
the kinetic-energy density and the remaining two
terms are the internal- and magnetic-energy den-
sities. We take this as our Ham11ton1an L density
and construct the Hamiltonian Alp,s,%,Bl=/,H,
s,v, B)dT where the square brackets are used
to indicate that A is a functional of the enclosed
functions. The integration is over a fixed spatial
region V. We desire a Poisson bracket, such
that Eqs. (1)~(4) can be represented in the form

x.t=[x',A], i=0,1,2,...1, (5)

where the ¥ are suitable functional dynamical
variables.

Before writing this bracket [Eq. (6) below], we
briefly discuss the structure of our formulation.
Quite generally consider the vector space V, over
the real numbers R, whose elements are function-
als of the form

F[T(] =fVF(§,t;-)Z,a-)Z/3xa, azf/axaaxﬁ, ...)dT,

where X is an n- uple of CV) functions x'&,t). [
particular, X°=p, x'=s, (*,x*,x*) =V, and (*,x°,
X')= B. The notation 9% /9%, is used to indicate that
F depends on the derivatives of x* with respect
to each of the three spatial variables x,, @ =1-3.
We assume F has a finite number of arguments
and is a C” function in each of them. The bracket
we obtain is a bilinear function which maps V XV
tov. In addition, the bracket possesses the fol-
lowing two 1mportant properties: (i) [F Fl=0
for every Fev. Forv over R, this is equivalent
to [F, G]—:[G F] for F, Gev; (i) the Jacobi
identity™® [ [F Gl1+[F [G E]] e [E Fl=0
for every E F GEV A vector space together
with a bracket which has the above properties de-
fines a Lie algebra.'
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Now we introduce the following bracket'?:

- OF  0G oF 0 [mﬁ
[F’G]'_/v<[6pv o Tov 6p] 5v (

[_1% <6F GG_%?GFﬂ
P 8s ov  0s oV

4

)]

+{p'1%§.[i§ (vx 5—&)} t3E° [vx(Bxp‘l—s)]})dr f Q“ ,dr (6)

Here the notation 6F/6x' means the functional de-
rivative with respect to xt. Suppose each x* con-
tains an additional parameter dependence x*(x,
a,,t). We define the functional derivative by®

oF

a9
—_— GF X dt (not summed). )

6)(, 9y

This functional derivative has the role, in fi-
nite-dimensional Hamiltonian systems, of the
derivatives with respect to phase coordinates
(oF /aq,,3F /8p,). In systems with finite degrees
of freedom the Poisson bracket is written

9G

[F, G] J" P

where the z! are the phase-space coordinates,
z‘e{ql, ceesQyyDPiyeces pN} . In canonical coordi-
nates the cosymplectic form, J*, is

0 I
J”(—I 0)’

where [ is the unit N XN matrix. In a canonical
system this matrix may be full and depend on the
dynamical variables. Clearly, this is the case
for our bracket, Eq. (6). The cosymplectic form
here is the operator 0/ which, in addition to be-
ing dependent on the dynamical variables, con-
tains derivatives.

Now we complete the description of our formu-
lation and demonstrate the relationship between
this bracket and Eqs. (1)-(4). We define a set

.DCYV whose elements are of the form
! [x'] =fvf¢(§)xl(§1t)dTy
i=0,1,2,...,7 (not summed),

where x! € C*(V) and the f; are arbitrary func-
tions'® of X alone, which vanish on 8V. D is thus
the set of dynamical variables. Substituting X °
and A into Eq. (5) yields

3520 =0 [y
o= [x°,4]

ffo(»)( +V- (pV)>dT 0. ®)
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Since fo(}E) is an arbitrary function, by the Du
Bois—Reymond'* lemma, Eq. (8) implies Eq. (2).
Equations (1), (3), and (4) follow, from the re-
maining dynamical variables of the set D, in a
similar manner.

Several features of the bracket defined in Eq.
(6) deserve comment. First, the density, p,
appears in the denominator of several terms.
This makes it awkward to evaluate the bracket
exactly when polynomial or Fourier representa-
tions are used for the dynamical variables. This
is easily rectified through a nonlinear transfor-
mation described below, and the resulting brack-
et, in terms of the new variables, has a pleasing
form.. Second, gradients appear throughout the
bracket. This is reminiscent of the bracket used
in Hamiltonian theories of the Korteweg—de Vries
equation’*?

9 9G

[F,6]= fdx <8x au>'
Two methods have been used to reduce the Korte-
weg—de Vries bracket to canonical form. Gard-
ner® used a Fourier transform to convert the de-
rivatives to numbers, and then scaled the coeffi-
cients to achieve canonical form. Similarly moti-
vated, we also consider Fourier transforms be-
low. In another approach to the Korteweg—de
Vries equation, Zakharov and Faddeev’ used a
spectral transform to achieve canonical form.
This method may be applicable here.

Our new set of Eulerian variables, which yields
an improved Poisson barcket is {p,0, M, B},
where ¢ =ps and M =pV; o is the specific entropy
and M is the momentum density. Substitution of
these variables into Eqs. (1)-(4) results in eight
conservation equations. The pressure is now
determined by p =p*(T,+ op~0,), where U(p,0)
=U(p,s). As a result of the transformation

5 O
—_— - — .-—-—$+ —_—
5les Solm o MEM TP 5o

together with similar transformations for the re-
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FIG. 1. The cosympletic form O%, T
maining variables, Eq. (6) becomes
. 5F _06G 0G _OF\ o <6F 6G  6G 6F>
T - T 'V"‘— o = = -—= —=
(7,61 dT( <6M 5o oM 6p)+M oM VoM oM VoM
oF _8G 066G _OF oF 06 6G _boF [ aﬁ) oG 5(‘;) oF
+°<m‘ Voo Tt V50>+B{<5ﬁ V3B ToM Va"ﬁ)+<v3‘§ o ~\V5B) o lf)s @

Notice that each term contains one Eulerian vari-
able in the numerator; the terms in the denomi-
nator have been eliminated.

Now consider a transformation of the Hamilton-
ian coordinates from Eulerian variables to the
coefficients of the Fourier transform of these
variables. For convenience, we take V to be a
unit cube and adopt periodic boundary conditions.
Then

p =2z Pilt) exp(2rk - X), (10)

|
where k& ZXZXZ (Z, the integers). We observe
from Eq. (7) that

oF _(oF

transpose. Equation (13) can be written as fol-
lows:

3F

__,_Ju

oG

J’

[F,G] i,jE 2, (14)
where z'c {py,0p, Mg, Bp|KEZ%x 2% Z}. The ma-
trix J has the property J*/ =~J% and its elements
can be obtained by a suitable map?® of the indices
of Oy, t onto Z. Clearly Eq. (14) is of the same
form as finite Hamiltonian systems, but here J

is of infinite order. Approximation techniques,
along with the proof of the Jacobi identity, inte-
gral invariants, and commutation relations, will

Yyl B exp(2mik * X) dT. (11)  be the subject of a future publication.
k One of us (J.M.G.) would like to acknowledge
Inverting Eq. (11), we obtain useful conversations with Dr. R. Littlejohn and
Dr. E. Levich., This work was supported by the
Z exp( 2miK * X). (12)  U. S. Department of Energy under Contract No.

Inserting Eqgs. (10) and (12), and the analogous
expressions for the other variables in our set,
into Eq. (9) yields
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