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With use of an equation-of-motion approach, a new microscopic theory of the nuclear
optical-model potential which is explicitly energy independent has been derived. This
theory suggests the possibility of replacing a wide range of conventional energy-depen-
dent optical-model potentials by a single, energy-independent but nonlocal, optical-model
potential.

PACS numbers: 24.10.Ht

Several authors" have already demonstrated
quite generally that a generalized optical-model
potential exists which produces the exact asymp-
totic wave function for elastic nucleon-nucleus
scattering when used in solving the one-body
Schrodinger equation. This potential is complex,
nonlocal, and depends explicitly on the incident
energy E of the full many-body wave function. ' '
In the Green's-function formalism' (and also in
Feshbach's formalism') the optical-model wave
function ps(k) (in the k representation) is obtained
by solving the nonlocal Schrodinger equation

Tps(k)+ fd'k Vo(k'k E),ps'(,k )=Ep's(k),

where T is the kinetic energy operator and
Vo(kk E, ) 'i,s the mass operator of the one-parti-
cle Green's-function which depends on the inde-
pendent variables k, k', and E, where E is the
exact eigenenergy of the many-body wave func-
tion.

The purpose of this paper is to present a new

microscopic derivation of the optical potential
which leads to a formally energy-independent po-
tential; i.e. , we shall show that the optical-mod-
el wave function can be obtained from the follow-
ing nonlocal Schrodinger equation:

7 ps(k)+ fd'k V'"(k, k, s „,)ps(k ) =-Eps(k) (2).
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The only but essential difference between Eqs.
(1) and (2) is that V"~(k,k', e&) depends only on
the single-particle energies ~k of the unperturbed
Hamiltonian T (or H, = T + V, where V is an arbi-
trary auxiliary potential) and not on the exact
eigenenergy E. Since ez is a unique function of
k', V" (k, k', e-„.) has one variable less than V~(k,
k', E). We call the energy dependence of V"~(k,
k fy) implicit (with respect to ez, ) in contrast to
that of V~(k, k', E) which is explicitly energy de-
pendent.

The optical potential V'~f(k, k') (we omit ez be-
cause it is not an independent variable) has the
following two important properties:

(i) It is particularly suited for a microscopic
calculation of the optical potential since the po-
tential has to be calculated only once with re-
spect to the basis of a solvable unperturbed Ham-
iltonian and not for various incident energies E.

(ii) A microscopically calculated optical poten-
tial which is only implicitly energy dependent
may eventually uniquely replace a wide range of
different potentials which are now in use in nu-
clear reaction theory.

In the following we shall prove that the poten-
tial V'"(k, k') exists and we shall also present an
exact diagrammatic expansion of it. This expan-
sion is based on the Bayleigh-Schrodinger type of
perturbation theory and, as we shall show, con-
tains folded diagrams. The method that we use
for deriving the optical potential is based on the
equation-of -motion technique. '

We start from the many-body Hamiltonian II
= T+ V, where T is the kinetic energy and V the
realistic nucleon-nucleon interaction. We con-
sider the (A+1)-body-system Schrodinger equa-
tion for stationary state,

Hl q.„"(E)&=E lq. „"(E)&.

The function (~'~ is the exact many-body wave
function and obeys the standard asymptotic bound-
ary conditions [superscript (+) indicates incident

plane wave in the elastic channel, radially outgo-
ing waves in reaction channels]. In the case of
elastic scattering, we are only interested in that
part of ~g„„~'(E)&where A nucleons form the
true ground state ~g„'& of the A-body system and
where one nucleon is in a scattering state. There-
fore we project out from ~g„„~'~(E)& this particu-
lar part and define a model-space problem by

H.gg&IC~„"(E)&=(E -E ')&It~„"(E)&, (4)

where E„' is the A-body ground-state energy.
The projection operator P is defined by

&=K IP &&v I

where the operator a&' (a&) creates (destroys) a
particle in a momentum state k and the wave
functions &qq~ fulfill the biorthogonal relation
&y"„~P"„&=6(k-k'). Now, the essential problem
to be solved consists in the derivation of the ef-
fective Hamiltonian II,&&, since knowing II,&&

we
obtain readily from Eq. (4) a one-body Schroding-
er equation for the quantity

(6)

which is just the optical-model wave function in
the k representation.

For the derivation of II,&&
we start from the

equation of motion for the operator a&.'

&0~'Ibg, H]l 0~„'(E)&
= (E -E.')&~.'I -, l~.„'~(E)&.

The commutator [a~,H] can be written as e"„a"„
+A"„, where e"„ is the single-particle kinetic en-
ergy and A& is defined by

A& = P as'(kP~ V~y6)a~ay. (6)
Byb

With use of the Gell-Mann-Low theorem, ' the
ground state g„' can be obtained by applying the
time evolution operator to the unperturbed ground
state 4„'. We shall prove also that the true scat-
tering wave function ~g„„,~'~(E)&, satisfying Eq.
(7), can be obtained in a similar procedure, i.e. ,

lq„„'"'(E.)& V(0, — )lC„„(E)&
&e„„(E)lq„„"(E)&&C„„N)IV(O,— )le„„(E)& '

with the parent state 4„„(E)given by

IC.„(E)&=S &.-.(E) &'IC.'&, (10)

where a summation is carried over the discrete set together with an integration over the continuum
set of states. The coefficients z-„(E) are to be determined. Substituting the above into Eq. (7), we ob-
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tain

(C „'!U(, 0)A.-„U(0, — )!e~„(Z))/(D„D„„,)
=(Z-Z„' —&"„)(C„'!U(,0)a~ U(0, — )!C~+,(Z))/(D D „,),

with

= (z -z,'- ~-„)(N,)-„s/(D„D„„) (12)

(N&) ~ -=(4~'I V(-, 0)g-„v(0, —~)I4»+, (Z)&' (»a)

(N~) g
=- (4&'I U(", 0)~gv(0, —")l4 ~+i(z))'~ (12b)

where Z denotes the linked diagrams defined as
those with all their vertices linked to the exter-
nal particle line. Hence obviously Nl. and N~
have the chain structure shown in Fig. I. The
boxes, the so-called Q boxes, "represent the
sum of all irreducible diagrams beginning and
terminating with one single-particle line. As
usual an irreducible diagram is defined as a
linked diagram which cannot be separated into

where D„and D„„stand for (4„!U(~, 0)!@„')and

(4 „+,(Z)!U(0, — )!4„+,(E )), respectively.
We now analyze" the diagrammatic structure

of this equation. The unlinked diagrams, denoted
as S, of the right-hand-side and left-hand-side
numerator are identical and can be factorized out
as a whole, yielding

(N. )-,~/(D. D.„)

! two connected pieces, each with at least one ver-
tex, by cutting one particle line. Notice the sim-
ilarity in structure between Nl. and N& of Fig. l.
The only difference between them is that N~ is
terminated at time t =0 by the operator A& of Eq.
(8) while N„ terminates at time t =0 with the oper-
ator a"„. Therefore the last box in N~ is a slashed
Q box indicating that the operator A-„acts at time
t = 0, and as a result N~ does not have the free
propagator term contained in N„. The chain
structure of N~ and N~ suggests clearly that we
can write N~ as a product of N„and a quantity
containing the slashed Q boxes. This can indeed
be done by using a folded-diagram factorization
procedure" leading to the basic result

(N )-= J'd'a V--"'(N )- (13)

where the effective interaction V'f is given by
the linked-diagram expansion shown in the bottom
part of Fig. 1. Combining Eqs. (6), (7), (11),
(12), and (13), we obtain as a final result the one-
body Schrodinger equation for the optical-model
wave function p~(k):

e-„p (k)+ f d'u'IV-„-„,"'p (k')

= (z -z.')p. (k). (14)

(N)- =
R k +

~ III ~ II
k k k

+

FIG. 1. Diagrammatic structures of Nz, , Nz, and
veff

Clearly V'ff is the energy-independent optical-
model potential of Eq. (2) we have been looking
for. Equation (14) serves to determine the opti-
cal-model wave function p~(k). From Eqs. (6),
(7), and (12) we see that p~(k) is just (N~)~8/
(D„D„„),where (N~)-„ is related to the coeffi-
cients ck(E) through Eqs. (12b) and (10). Thus
Eq. (14), which determines p~(k), also formally
determines cq(Z). This completes our proof that
starting from the equation of motion (7) we derive
the optical-model potential of Eq. (14) and Fig. 1.
And this derivation is indeed quite straightfor-
ward.

A special feature of our optical-model potential
is that it contains folded diagrams, as shown by
its diagrammatic expansion in Fig. 1. For ex-
ample, the third term is twice folded. The sym-
bols J indicate folding operations. " The folded
diagrams can be conveniently calculated and
should not add much computational difficulty to
the present theory. This is based on some bound-
state folded-diagram calculations" with use of a
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realistic nucleon-nucleon potential. Some typical diagrams of our optical-model potential are given in
Fig. 2. With use of standard methods, "the value for diagram a is obtained as

Q 2V5/(6 gr —6 —E ~ + f~ + j'g),

and that of diagram P as

pUVU/[(E g» —6 —6~ + 6 ~ +g'g) (6 y —6 —6& + E&+'f7' )] ~

(15a)

(15b)

k

g„b b
a

C

k k

FIG. 2. Typical diagrams contained|n the energy-
independent optical-model potential &Tj'

where the summations run over all intermediate
indices and for brevity we have omitted the in-
dices associated with the antisymmetric v ver-
tices. Note that diagra, m P is a folded diagram.
In the above, we take the limit of q-0+. This
comes from the boundary condition of g„„~'(E)
that, at time t =0, it contains a component where
we have one particle in an outgoing spherical
wave. By making a diagrammatic expansion of

g„+,~'~(E) by way of Eq. (9), we see readily that
this boundary condition is assured by the above
limiting procedure. These ig factors will make
our optical-model potential generally complex.
Several observations are now in order:

(i) The central result of this paper is the deri-
vation of an optical-model potential which is ex-
plicitly energy independent. As shown by Eqs.
(15a) and (15b), individual diagrams of V"~ de-
pend energetically only on the single-particle en-
ergies e's defined by the unperturbed Hamilto-
nian. This is in contrast to the optical-model po-
tential VG(&e~) of the Green's-function formal-
ism""" which is explicitly dependent on the
exact energy ~~ =F -F.„'.

For the energy-dependent potentials we expect
threshold effects since with increasing projectile
energy new inelastic or reaction channels open up
energetically suddenly. At least these threshold
effects appear in the imaginary part of the poten-
tial. Below the inelastic threshold the energy-
dependent potential is Hermitian (no imaginary
part). Now the question arises whether there is
a contradiction between the energy-dependent and
energy-independent optical potentials. The an-
swer is, no'. Indeed, by using a partial summa-
tion method'" for summing up the folded-dia-
gram series one can obtain an exact mathemati-

cal relation between the energy-independent V"'
and the Green's-function optical potential, name-
ly

(T + Vert)

= f & I p &&5 I [T +vs(~z)]l pz&&P zl (16)

where the optical-model wave function pE obeys
the biorthogonal relation &P~lp~. &

= 6(E -E').
From Eq. (16) one can see that V'~~ is a particu-
lar energy-averaged potential obtained by aver-
aging over Vo(u!~) with respect to energy He. nce
if we know p~ and V~(e~) for all energies, we
can construct, in principle, an energy-indepen-
dent V"~ as shown by Eq. (16). In reality, this is
of course not practical. What we have done in
this paper is to have attained a systematic meth-
od for calculating V'~~, as indicated by Fig. 1,
without prior knowledge of p~ and V~(u~).

If we act with the optical-model operator in Eq.
(14) onto a wave function

l p~g with E, below
threshold, then, of course, only the Hermitian
part of V' will be active. In this sense V' ~ al-
so includes threshold effects implicitly. This
one can also easily understand from a physical
point of view. The optical-model wave function
p~(k) of Eq. (6) is expected to be a smooth func-
tion of k, peaked around k, = (2~~ ~/5')'". Then
from Eq. (14) we see that p~(k) depends primari-
ly on the portion of Vkk' with k=k'=k, . Hence
for p~(k) the important contribution to V' comes
from the diagrams with starting energies e-„[see
Eqs. (15a) and (15b)] in the vicinity of ski =a~. If
w~ is below inelastic threshold then the incoming
nucleon is essentially sensitive to only those ma-
trix elements Vz z. which are real and therefore
Hermitian. To give a further support of our the-
ory, let us mention the work of Johnson'~ in which
he showed that by the inclusion of folded diagrams
one can obtain an energy-independent nucleon-nu-
cleon potential.

(ii) In order to support our theory by numerical
findings we refer to the analyses of neutron scat-
tering data which I'erey and Buck" have per-
formed using different sets of nonlocal optical po-
tentials. They found by variation of the nonlocal-
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ity a nonlocal potential which could fit neutron
elastic scattering data in the energy range from
0.4 to 24 MeV and where the optical-model param-
eters were energy independent. This is, of
course, a remarkable result since we know that
the absorption, for instance, is changing quite
dramatically by going from 0.4 to 24 MeV inci-
dent projectile energy. We believe that these
findings of Percy and Buck strongly support our
result that there exists a nonlocal potential,
which is not explicitly energy-dependent, which
describes elastic nucleon scattering in a wide en-
ergy range. The theory presented in this paper
may serve as a convenient tool in deriving such
a potential. Actual calculation of an energy-inde-
pendent optical-model potential as outlined in this
paper is in progress.
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A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field
is presented. Contrary to previous work the dynamical variables are the physical variables,
p, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the
Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where
the dynamical variables are the spatial Fourier coefficients of the fluid variables.

PACS numbers: 47,10.+ g, 03.40.Gc, 47.65.+
Several advantages may be gained from expres-

sing a set of equations in Hamiltonian form. In
addition to their formal elegance, Hamiltonian
systems possess Poincare invariants that influ-
ence the dispersion of an ensemble of systems
with clustered initial conditions. A manif estly
Hamiltonian formulation of a given problem makes
it easier to find those approximations that pre-
serve the Hamiltonian character. Here we pre-
sent such a formulation of hydrodynamics and
magnetohydrodynamics.

a, 52.30.+r
Hamiltonian systems are most elegant when ex-

pressed in canonical coordinates. Hydrodynam-
ics is most usefully expressed in Eulerian vari-
ables. These two desiderata conflict. In prac-
tice, the penalty paid for adopting noncanonical
coordinates is not severe, so that branch of the
dichotomy is pursued here.

Previously, the equations of hydrodynamics'
and magnetohydrodynamics, ' in both Eulerian and
Lagrangian form, have been shown to arise from
a suitable Hamilton's principle. Such a Lagrang-
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