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The first experimental comparison of Li* and He* scattering (primary energies be-
tween 100 and 1200 eV) from a clean Ni(110) surface shows strong variations of the Li*
intensity with crystal orientation, an effect which we attribute to multiple scattering.

In the He* case, only those He* which scattered from surface atoms in single binary
collisions survived as ions. The energy dependence of differential scattering cross sec-
tions is obtained from the experiments as well as the ratio of the neutralization proba-
bilities of Li* and He" in the single-scattering events.

PACS numbers: 79.20.Nk

We report the first results from experiments
and numerical calculations comparing low-energy
ion scattering of Li* and He* from a clean Ni(110)
surface. Large differences in absolute yields
are observed between He* and Li* which are
quantitatively explained by differences in the neu-
tralization probabilities. The Li* yield exhibits
strong crystallographic effects, i.e., in the direc-
tion of the (110) surface half channels the back-
scattered intensity is enhanced by a factor of 30
under certain experimental conditions. Calcula-
tions show that this enhancement is caused by
multiple-scattering events. For He*, the com-
parison of the calculations with the experiment
gives strong evidence for trajectory-dependent
neutralization effects.

The scattering of Li* at energies below® 20 eV
and the He' scattering in the energy range from?
100 eV to 2 keV have been described by the bina-
ry-collision model. However, the He* yield is
to a large extent dominated by neutralization
which complicates the analysis of the experiments,
whereas for alkali ions we expected ion yields
close to those of Ref. 1 because of their low ioni-
zation potentials in comparison to the work func-
tion of solids.® Since the elastic part of the ion-
surface interaction can be calculated within the
binary-collision model, Li* can be used as a
probe for the elastic interaction, thus allowing
more detailed conclusions about the neutralization
behavior of He*. In our case the Li* scattering in
the neighborhood of the (100) and (110) surface
half channels is heavily influenced by trajectories
which include zigzag-type motions. The intensi-
ty enhancement caused by these trajectories is
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not obtained for He*, indicating different neutral-
ization for different trajectories.

The experiments are performed in an UHV sys-
tem* which allows doubly differentiated analysis
of ion scattering (energy and scattering angle)
for primary energies from 100 to 2000 eV. A
commercial Li* source (Spectra-Mat, Inc.) has
been adapted® to fit into our rare-gas electron-
impact source, such that rare-gas-ion and Li*
scattering experiments can be done under identi-
cal target and scattering conditions by selecting
the beams with the sector field magnet. Li* cur-
rents in the picoampere region are sufficient to
obtain spectra, and are generally a factor of 10
to 100 lower than the He* currents. This reflects
grossly the difference in neutralization probabil-
ities. These low currents and current densities
(beam size 2 mm diam) allow sufficient time to
complete the experiment without detectable dam-
age or contamination of the target. The Ni(110)
was mechanically and electrolytically polished,
oriented by x-ray diffraction, and cleaned and an-
nealed in sifu. Target preparation and cleanli-
ness were checked by low-energy electron diffrac-
tion, Auger-electron spectroscopy, and ion scat-
tering.

Figure 1 shows Li* and He* spectra for an
orientation of the plane of scattering 3 deg off
the [110] direction. The positions of the main
peaks coincide with the energy given by the binary
scattering of two mass points. This was previ-
ously observed for He* and also for Li* at lower
energies (20 eV and below).’? For certain azi-
muthal regions, i.e., around the (110) and (100)
surface half channels, the Li* spectra show high-
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FIG. 1. Ton backscattering of Li* (left) and He* (right) from clean Ni(110). The plane of scattering is perpen-
dicular to the surface and 38° off the [110] surface direction (¢ = 3°; see Fig. 2). Note the differences in the ordi-

nates and in full width at half maximum.

energy shoulders typical of multiple-scattering
events. The low-energy tail observed for Li* is
similar to H" backscattering® and higher-energy
rare-gas—ion scattering.” It is ascribed to parti-
cles which are backscattered after penetrating at
least beyond the top atomic layer of the solid,
i.e., a distinction is made between the “surface
peak” and “scattering from the bulk.” Figure 2
shows the azimuthal dependence of the Li* and
He* surface peak intensities at 600 eV, an impact
angle of y =30°, and a laboratory scattering angle
of 6 =60°, The He" intensity is virtually indepen-
dent of the crystal orientation (as are the energy
and width of the surface peak), whereas the Li*
intensity depends strongly on the crystal orienta-
tion (the peak form also changes). Included in
Fig. 2 are the results of numerical calculations
based on the binary-collision model. The pro-
gram® simulates the experiment with respect to
beam and analyzer properties. The target is a
three-dimensional Ni(110) crystal with a thick-
ness of two layers, to minimize computing time.
Thermal vibrations are included. The interaction
potential used is a Thomas-Fermi-Moliére poten-
tial. Neutralization is not included. For both He
and Li, the calculations predict a strong azimuth-
al dependence which is experimentally found for
Li* only.

The program allows an analysis of the scatter-
ing process with respect to different types of
trajectories. In the region of the intensity mini-
mum (around ¢ =50° in Fig. 2) the peaks of the

spectra are built up by single-binary-scattering
events, whereas in the region of the surface half
channels multiple-scattering trajectories involv-
ing the first and second layer give the main con-
tribution to the intensity in the peaks. (Details of
these results will be published elsewhere.®) Ex-
perimental evidence for the calculated results is
given by the energy spectra (Fig. 1) and the azi-
muthal dependence of the backscattered Li*-ion
intensity (Fig. 2). Further evidence is obtained
from the energy dependence of the intensity as
shown in Fig. 3. If the scattering in the ¢ =50°
region is mainly due to single binary collisions,
then the measured intensity should follow the en-
ergy dependence of the binary-collision cross
section. It is indeed possible to fit the He* scat-
tering intensity /o« (do/dQ)P to a calculated differ-
ential scattering cross section do/dQ by dividing
the measured intensities by an ion survival prob-
ability® P =exp(-A/av ,) as shown in Fig. 3. Here
v , is the ion velocity perpendicular to the sur-
face and the “survival parameter” A/a is found

to be 1.78x107 cm/s. This value is comparable
to previous results for different scattering angles
[2.88%107 cm/s for ¢ =45°, 6 =90° (Ref. 10) and
3.78x107 cm/s for ¥ =90°, 6 =132° (Ref. 11)]. For
the calculation of the scattering cross section a
Thomas-Fermi-Moliére potential with a Firsov
screening parameter was used. This is apparent-
ly appropriate to describe the scattering, at least
in our parameter range. A consistent result with-
out further fit is obtained if we calculate the
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FIG. 2. Azimuthal dependence of the experimental Li* (solid circles) and He* (open squares) intensities (left
ordinate), and comparison with numerically calculated results (lines) (right ordinate). Experiment and calculation
are matched for the He* scattering with use of P = 0.11 (resulting from Fig. 3) to reduce the calculated single-scat-
tering component (lower curve) contained in the total scattering (upper curve). .

cross section for Li*-Ni scattering and compare
it with the experimental intensities in the “single-
scattering regime,” i.e., for an azimuthal angle
of ¢ =53°. Without invoking any neutralization
(i.e., P =1) and with use of the same factor as in
the He* case to compare cross sections (A2/sr)
with intensities (counts/nA-s), we get an exact
agreement of the measured and calculated values,
as illustrated in Fig. 3.!2 This result strongly
supports the idea that the Li* scattering peak in-
tensity around ¢ =50° mainly arises from single-
scattering events without neutralization. For the
single scattering of He* the ion survival proba-
bility is 0.11 with A/a =1.78x10" cm/s, whereas
all other trajectories are subject to neutraliza-
tion by factors of 1073 to 10™* (Fig. 2), compara-
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ble to the charge-state fraction observed for
“scattering from the bulk.”®

There is an interesting analogy between our re-
sults and those reported recently for 2.4- and 5-
keV neon ions and neutrals backscattered from
Ni(001),'® in which neutralized neon shows a
strong dependence on crystal orientation in con-
trast to the ions.

In summary, our results demonstrate strong
differences between Li* and He"* scattering from
a Ni(110) surface. They can be explained by con-
sidering the single- and multiple-scattering con-
tributions. For Li* both contributions exhibit an
equally low neutralization probability. Multiply
scattered He* ions, however, have an extremely
low probability to escape from the surface as
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FIG. 3. Energy dependence of the He* and Li* intensities (left ordinate) compared with the calculated differential
scattering cross sections for single scattering (right ordinate). The exponential yields P = 0.11 for He* at 600 eV
independent of the azimuthal angle. v, is the normal velocity component of the scattered He* ions.

ions, such that virtually all backscattered ions
arise from single-scattering events from the top
atomic layer. Our results also yield absolute
numbers for the survival parameter and the scat-
tering cross sections.
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