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Critical Dynamics of Sound in KMnF3
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The critical dynamics of KMnF3 above the cubic-tetragonal transition were studied by
ultrasonics, including a novel phonon-echo technique. Well above 1'~, the results con-
firm predictions obtained from the three-dimensional Heisenberg model, including the
value of the crossover exponent /=1.26. Analysis of deviations from quasistatic behavior
near &, yields for the first time a dynamic scaling function &(~v') for the critical attenua-
tion of ultrasound. 7 may be interpreted as the relaxation time of ordered clusters. We
find that v= 9&10 t ' s.

PACS numbers: 64.60.Ht, 62.65.+k, 63.75.+z

Critical attenuation of ultrasound at structural
phase transitions has been studied in a number
of systems over the last decade. Yet, even in
the perovskites, which have been the subjects of
numerous investigations, ' ' several important
questions of theoretical as well as experimental
nature have remained. As examples of this we
mention (i) the possibility of dimensional cross-
over" ' in the temperature exponent p for the
attenuation coefficient n, and (ii) the strong de-
viation from co' dependence reported' '' for the
attenuation in KMnF, .

In the present Letter we focus on two items:
(a) a new experimental technique (echo technique)
capable of removing wave-front distortions occur-
ring in soundwaves propagating in inhomogeneous
media; (b) experimental results obtained or sub-
stantiated by this technique near the transition
temperature T, =187 K in KMnF„and their inter-
pretation. Analysis of the results in relation to
renormalization-group calculations' leads for the
first time to direct determination of a dynamic
scaling function for ultrasonic attenuation near a
structur al phase transition.

Until now, the sample-quality problem has been
a major obstacle in ultrasonic work near struc-
tural phase transitions. This problem arises
from the fact that the sound velocity v is a strong-
ly varying function of the relative temperature
t =(T —T,)/T, . Since T, will vary slightly with
position r in a nonperfect sample, v is also a
function of r, i.e. , v =v(r, t) near T,. Here, the
conventional reflected pulse train is therefore
often badly distorted by inter ference, rendering
data inadequate for determination of critical ex-
ponents.

In the new ultrasonic technique, illustrated in
the inset of Fig. 1, we have employed the electro-
acoustic echo effect." A forward acoustic pulse

of frequency ~ and wave vector f, %~ exp[-i(~t
-k r)J, emitted as a plane wave from an acous-
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FIG. 1. Demonstration of (a) strong interference ef-
fects in a reflected pulse in a nonparallel sample of
KMnF3 recorded during a fast temperature sweep near
&~ (thin line), and (b) removal of the interferences by
echo technique (heavy line). The two curves were re-
corded simultaneously. Inset: Experimental configura-
tion for echo investigation of KMnF3. The soundwave of
frequency a is generated by the transducer. (2'), trans-
mitted through the sample (, into the echo crystal (8)
where it is exposed to the 2~ field of the spiral cavity.
Wavefronts of forward wave (full lines) and backward
wave (echo, broken lines) are illustrated.
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tic transducer, is passed through the sample
into the echo-active crystal bonded to it. For the
present investigation we chose piezoelectric
Bi~,Ge02O (BGO) as the echo crystal. It is located
in a microwave cavity tuned' to frequency 2~.
Here a homogeneous electric field E=E,exp(i2~t)
is applied to the forward wave. By a mixing
process, a backward acoustic wave A.„~Af Eo
&&expi(~t+k r) is generated. The outcome of the
mixing therefore is to ~eve~se the wave vector,
i e ,. k. -—k, at all points on the wave front. The
echo mave front now reconstructs continuously,
replicating the original form during backward
propagation, and finally reaches the transducer
as a plane wave. At this stage a correct measure-
ment of acoustic amplitude is made.

The technical improvements discussed above
are demonstrated by measurements near T, in
KMnF, shown by the two curves of Fig. 1. A re-
Qected pulse as well as the echo were recorded
simultaneously and continuously during a fast tem-
perature sweep in a nonparallel sample. While
the reflection data display the resulting interfer-
ence effects in a very pronounced manner, the
echo shows no trace of it even under this extreme-
ly demanding test. Similar behavior is also seen
close to T, when the temperature is stabilized at
each point and sample parallelism satisfies usual
criteria. Thus the echo technique by k reversal
is capable of totally removing the interference ef-
fects caused by strong wave-front distortions.

An important new aspect brought into the theo-
retical discussion of ultrasound by Murata' is the
crossover exponent P entering in the critical ex-
ponent p for ultrasonic attenuation in perovskites.
This exponent is introduced to account for the ef-
fective "spin" anisotropy due to the scaling field
represented by the symmetry-breaking strain-
order-parameter interaction terms in the Ham-
iltonian. "'4

The expression for the attenuation as given by
Murata is

n(k, IIL)
= [(u'/4iVI, 0,Tv'(k, p. )]g(k, p), (1)

for a sound wave of wave vector k and polariza-
tion p. . 111, is the unit-cell mass, k~ is Boltz-
mann's constant, T is the temperature, and

n(k, p. ) is the sound velocity. The function"
g(k, p) as well as the exponents are different for
different modes.

For each mode k, p, , the function g(k, p) may be
expressed as a sum of at most three terms:

3

g(k, p ) = P~ ~;(k, p. )K;D, 't ',

where z; (k, p) are known'o mode-dependent nu-
merical coefficients, K; are' derived from the
four-point correlation functions for the F, octahe-
dra, and D, are linear combinations of the coup-
ling constants of the Hamiltonian. ' The theo-
retical values' for p; are as follows in the n =d =3
Heisenberg model: p, =1.34; p, =p, + 2(P, —1)
=1.86; p, =p, + 2(p, —1) =1.86, with the crossover
exponents Q, = p, =1.26.

Experiments were carried out using the follow-
ing modes: L[100], L[110], T[110], and L[111].
All modes were studied by echo technique as well
as by conventional pulse-reflection measure-
ments.

The present investigation was far more exten-
sive than any previously reported on this mater-
ial. In particular the aim was to understand the
strong deviations from co2 dependence reported
earlier. '4'' It was necessary, therefore, to ex-
pand both the frequency range (15-700 MHz) and
the temperature region (0 & T —T, & 30 K) consid-
erably relative to previous work. Furthermore,
four separate samples mere used. Samples I-III
were of different origin (A. Linz, Massachusettes
Institute of Technology) than sample IV (Centre
d'Etudes Nucldaires, Grenoble). Data which are
given in the figures below are mainly from sam-
ple IV, but the data from all samples are consis-
tent.

It turned out that the expected ~2 dependence
could indeed be recovered by increasing the tem-
perature sufficiently far above T,. Also, in this
range the exponents p; took on values which were
quite different from those reported by previous
workers (with the one exception of Fossheim,
Martinsen, and Linz, ~ who studied p with k~~[100]).
The dominant exponent turned out to be very near
1.9, for all modes. This means that the weight
factors ~;K;D 2 favor terms containing the large
p s, i.e., p, and p, . Experimentally these cannot
be distinguished. Measurements for the mode
L[110]will be discussed in some detail below. At
this point we note the fact that all results are con-
sistent with p2= p, =1.87+ 0.05, in close agree-
ment with the predicted value' of 1.86.

The typical behavior mell above T, for the im-
portant terms in the attenuation is hence

~ ~ ~2.0 + Oel t"1~ 87 & Oo05 (2)

based on measurements using four modes and
four different specimens of KMnF„of different
origin and defect contents. The agreement with
theory is striking. Further, it confirms the im-
plied value of the crossover exponents $2= $3
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FIG. 2. Crossover temperature 41'~ vs signaling
the change from the hydrodynamic regime to the dyna-
mical region closer to &~ in KMnF&. Data points are
obtained from experiments, the full line corresponds
to theoretical expectation as explained in the text.

= 1.26, and constitutes the first determination of
these exponents in KMnF, . A distinction between
cubic and Heisenberg fixed points cannot be made
since the difference is within experimental error.

However, as all data show, on approaching T,
the attenuation does not continue to diverge ac-
cording to Eq. (2). Rather, a rollover is found:
The frequency dependence is much weaker than
~, and the co exponent in some cases approaches
unity very close to T,.

To study this behavior the data were analyzed
with respect to an, as yet, unknown dynamic scal-
ing function" G(&u~), i.e., we take

~2t 1~ 87G(~g )

where G(vw) may be determined from a plot of
a, t„/aPt '"vs &u~. ~ =$'=$, t "' is the relaxa-
tion time of correlated regions and ( is the cor-
relation length. The ultrasonic attenuation is not
expected to exhibit singular behavior at the criti-
cal point except when q =0, co =0. This means
that G(&u~) must have the following asymptotic
form in the limit ~~»l:

G(~~) (~&) '"=(~~) '".
In the opposite bmit, ~~ «1, we expect the usual
scaling result such that G(~~) = l.

The temperature-dependent time constant ~ may
be extracted by analysis of the crossover from
quasistatic' (~w= 0, k$ =0) to dynamic behavior
(&uv W 0, k$ =0). A plot of crossover temperature
AT& relative to T, defined by the onset of the
rollover is shown as a function of frequency in
Fig. 2. The experimental points are taken to cor-
respond to approximate fullfilment of the condi-
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FIG. 3. Dynamic scaling function for ultrasonic at-
tenuation in KMnF3 determined by analysis of experi-
mental data; The fully drawn curve represents the
average of all data from a large number of frequencies
with use of four different modes. Data points refer to
one particular mode: Ll 1.1.0] . . The dashed lines show
the expected asymptotic behavior as discussed in the
text. Because of the first-order character of the tran-
sition and corresponding uncertainty in 1"~, the slope
defined by the 6 data points to the left is also some-
what uncertain.

tion co~ =1. The theoretically expected behavior
can be deduced as follows.

The argument co~ of G may be written in the
form &uw =(v/vo)t "', where z= 2 is the dynamic
scaling exponent as given in the relaxation model
(model 6 of Halperin and Hohenberg"), believed
to be the appropriate model for this system. The
condition ~~ =1 then corresponds to a crossover
temperature tz =(~/~, )~t"', where the exponent
1/vz in tbe three-dimensional Heisenberg model
is 0.71. Such a line is drawn for comparison in
Fig. 2. The agreement is quite good. This be-
havior rules out the possibility of dimensional
crossover, since such a crossover would be fre-
quency independent. The characteristic fr equen-
cy &u, is also found: &ug2m = 1.8 &&10" s ', and the
relaxation time in units of seconds is

9&&10 i3t" uz (4)

The function G(&u~) may now be deduced (Pig.
3). A simple result is found: G(~w) is, within
the limits of uncertainty, the same for all modes
and samples. It approaches unity far from T„
and, within the uncertainty it is in agreement
with tbe predicted (~~) '"behavior close to T„
as shown in Fig. 3. Note, however, that our data
are not sufficiently accurate to determine whether
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we are in the truly asymptotic region near T,.
This description replaces the previously suggest-
ed dimensional crossover. 4 ~ To our knowledge
it represents the first determination of a dynami-
cal scaling function for ultrasonic attenuation
near phase transitions. In a recent paper by
Suzuki, ' an attempt was made to include a dynam-
ic scaling function in the expression for e in
KMnF, . However, a determination of the scaling
function was not achieved.

The time constant ~, which has been experi-
mentally determined here, may be interpreted as
the characteristic time of the cluster dynamics
near T,. Also, it maybe seen as a direct mani-
festation of the inverse width of the central peak '
which is too narrow to be determined from neu-
tron data.
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