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Perot cavity of 4-/-5 cm and R-0.6, for exam-
ple, the minimum incident power required for the
occurrence of a turbulent state is estimated to
be 50 MW/cm', by using the values y '-2 psec,
n, -10 "esu and k-10' cm '. This value of the
incident power can be drastically lowered if a
medium with large n, is used; 1 kW/cm is suffi-
cient for Rb vapor (y '-200 psec, n, -10 ' esu)
in the same cavity.

An equivalent system whose dynamics obeys
Eq. (8) can be constructed by modifying partly
the hybrid bistable optical device studied by
Garmjre et aE.' One has only to insert a delay
line with delay time t~ between the photoconductor
which detects the output light from a Pockels cell
modulator and the feedback circuit. If the rise
time of the detector is short enough, the equation
which governs the temporal behavior of the output
voltage is identical with Eq. (8), where y should
be regarded as the relaxation time of the feedback
circuit. In such a system the transition from seU-
pulsing to turbulence will easily be observed.

Discussions with Professor K. Tomita are grate-
fully acknowledged.
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Geometry from a Time Series
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It is shown how the existence of low-dimensional chaotic dynamical systems describing
turbulent fluid Qow might be determined experimentally. Techniques are outlined for re-
constructing phase-space pictures from the observation of a single coordinate of any dis-
sipative dynamical system, and for determining the dimensionality of the system's at-
tractor. These techniques are applied to a well-known simple three-dimensional chaotic
dynamical system.

PACS numbers: 47.25.-c

Lorenz originally demonstrated that very sim-
ple low-dimensional Systems could display "chaot-
ic" or "turbulent" behavior. ' Attractors which
display such behavior mere termed "strange at-
tractors" by Ruelle and Takens, ' who then went
on to conjecture that these strange attractors are

the cause of turbulent behavior in fluid flow. The
experiments of Gollub and Swinney have strength-
ened the conjecture, ' but the question still re-
mains: How can we discern the nature of the
strange attractor underlying turbulence from ob-
serving the actual fluid flow~
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Data obtained by experimentalists examining
turbulent fluid flow often take the form of a "time
series, "which is to say, a series of values sam-
pled at regular intervals. We address here the
problem of using such a time series to recon-
struct a finite-dimensional phase-space picture
of the sampled system's time evolution. From
this picture we can then obtain the asymptotic
properties of the system, such as the positive
Liapunov characteristic exponents, which are a
measure of how chaotic the system is,' ' and to-
pological characteristics such as the attractor's
topological dimension. We illustrate these recon-
struction methods by applying them to a time se-
ries obtained from sampling one coordinate of a
three-dimensional chaotic dynamical system first
studied by Rossler, ' and then comparing the re-
sulting values of the Liapunov exponents to those
obtained by a different method.

The dynamical system of interest is a set of
three ordinary differential equations:

x = —(y +z),

y =x +0.2y q

z =0.4+ xz —5.7z.

These equations have a chaotic attractor which is
illustrated in Fig. 1, which was obtained from an
analog computer simulation.

The heuristic idea behind the reconstruction
method is that to specify the state of a three-di-
mensional system at any given time, the meas-
urement of any three independent quantities
should be sufficient, where '*independent" is not
yet formally defined, but will become operation-
ally defined. We conjecture that any such sets of
three independent quantities which uniquely and
smoothly label the states of the attractor are dif-
feomorphically equivalent. The three quantities
typically used are the values of each state-space

coordinate, x(t), y (t), and z(t). We have found
that beginning with a time series obtained by sam-
pling a single coordinate of Eq. (1), one can ob-
tain a variety of three independent quantities
which appear to yield a faithful phase-space rep-
resentation of the dynamics in the original x,y, z
space. One possible set of three such quantities
is the value of the coordinate with its values at
two previous times, ' e.g. , x (t), x (t —7), and x (t
—2v). Another set obtained by making the time
delays small, and taking differences is x(t), x(t),
and x(t). Figure 2 shows a reconstruction of the
(x,x) picture from the time series taken from
sampling the x coordinate of Eq. (1). Comparison
of Figs. 1 and 2 certainly indicates that topologi-
cal characteristics and geometrical form of the
attractor remain intact when viewed in the (x,x)
coordinates. For an experimentalist observing
some chaotic phenomenon, such as turbulent
fluid flow, the construction of phase-space coor-
dinates might not be as simple as the case illus-
trated above. In many cases the experimentalist
has no a priori knowledge of how many dimen-
sions a dynamical description would require, nor
the quantities appropriate to the construction of
such a description. So far there is no universally
applicable method of phase-space construction,
though the nature of the phenomenon might suggest
possible alternatives. In a study of fluid turbu-
lence, for example, the experimentalist might
try using the velocity of the fluid in different di-
rections, at different points in space, and at dif-
ferent times.

After having obtained a phase-space picture like
that shown in Fig. 2, if the attractor is of suffi-
ciently simple topology, one can use methods
which have been previously developed" to con-

FIG. 1. (x,y) projection of Rossler (Ref. 7). FIG. 2. (x,x') reconstruction from the time series.
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TABLE I. Comparison of characteristic exponents
from original (x,y, s) system, transformed (p,y,y)
system, and construction of return map from (x,i,x)
system.

Characteristic
exponent value

(x,y,z) system [Eq. (1)l
(y,p, j) system [Eq. (2)l
(x,x) return map

reconstruction

0.0677 + 0.0005
0.0680+ 0.0005

0.0677 + 0.0001

struct a one-dimensional return map, and then
from the return map one can obtain the positive
characteristic exponent of the attractor. Roughly
speaking, the procedure consists of making a cut
along the attractor, coordinatizing it with the
unit interval (0, 1), and accumulating a return
map by observing where successive passes of the
trajectory through the cut occur. The result is a
return map of the form x (n +1) =f(x (n)), and the
positive characteristic exponent is found by com-
puting

s
A. = lim —Q ln—

N~~N], ,
dx

or alternately, by computing

1 d
A. = P(x') ln — dx'

dx xl

if one knows (or has accumulated empirically)
the equilibrium probability distribution P(x).
See Shaw' for more complete discussions of the
computation of the characteristic exponents with
use of this method.

Equations (1) are sufficiently simple that one
can explicitly obtain a new set of three differen-
tial equations describing the dynamics of the
state space comprised of a coordinate along with
its first and second derivatives. Table I contains
a comparison of the characteristic exponents for
the original system [Eq. (1)], the transformed
(y,y,y') system, and the (X,x) reconstructed re-
turn map, and shows very good agreement. The
first two entries were obtained using the method
of neighboring trajectories, ' ' and the third entry
was obtained using the return map method out-
lined above. The former method requires explicit
knowledge of the dynamical equations, while the
latter method depends on the dynamical system's
attractor having sufficiently simple topology.

When trying to apply these reconstruction tech-
niques to actual turbulence data, one of the first

questions will be exactly what dimension the sys-
tem's attractor is. Note that the topological di-
mension of the attractor is directly related to the
number of nonnegative characteristic exponents
(see Bennetin, Galgani, and Strelcyn, ' Shimada
and Nagashima, ' and Crutchfield"). A spectrum
of all negative characteristic exponents implies
a pointlike zero-dimensional attractor; one zero
characteristic exponent with all others negative
implies a one dimensional attractor; one positive
and one zero characteristic exponent corresponds
to the observation of folded-sheet-like structures
making up the attractor; two positive characteris-
tic exponents correspond to volumelike struc-
tures; and so on. The case of two zero charac-
teristic exponents corresponds to a two-torus
(two dimensional), but this should be distinguish-
able from a sheetlike chaotic attractor by the ob-
servation of two sharp incommensurate frequen-
cies in the power spectrum. The dimension re-
ferred to above is the topological dimension of
the attractor; we must realize that the Cantor-set
structure typical of these objects implies a non-
integral fractal dimension" which can be ex-
pressed in terms of the characteristic exponents. "
However, at any finite degree of resolution the
observed topological dimension will be some inte-
ger value, though nonintegral dimension might be
obtained by varying the resolution of the observa-
tion to see scaling in the structure of the attrac-
tor.

We now outline a procedure for determining the
dimension of a smooth dynamical system. We
begin with the idea that the "dimension" of a sys-
tem being observed corresponds to the number .

of independent quantities needed to specify the
state of the system at any given instant. Thus
the observed dimension of an attractor is the
number of independent quantities needed to specify
a point on the attractor. For an attractor in an e-
dimension phase space, we can discover the num-
ber of independent quantities needed for such a
specification by slicing the attractor with (n -1)-
dimension hypersheets defined by one coordinate
being constant. The topological dimension of the
attractor corresponds to the minimum number of
sheets which, when intersected with each other
and the attractor, will yield a countable number
of points

If one chooses as phase-space coordinates the
value of some variable along with time-delayed
values of the same variable, this slicing of phase
space can be accomplished by constructing condi-
tional probability distributions. We define the



VOLUME 45, NUMBER 9 PHYSICAL REVIEW LETTERS I SEPTEMBER 1980

4th-order conditional probability distribution of
a coordinate x, P(x~ x„x„.. . ;T), as the proba-
bility of observing the value x given that xy was
observed time 7. before, x, was observed time 27
before, and so on. If we take 7 to be small, the
k conditions are equivalent to specification of the
value of x at some time along with the value of all
its derivatives up to order k —1. In fact, we must
have r «I/A, where I is the degree of accuracy
with which one can specify a state, and where A

is the sum of all the positive-characteristic ex-
ponents, otherwise the information generating
properties of the flow would randomize the sam-
ples with respect to each other. ' In practice, it
is easy to choose ~ one or two orders of magni-
tude smaller than I/A. The dimensionality of the
attractor is the number of conditions needed to
yield an extremely sharp conditional probability
distribution, in which case the system is deter-
mined by the conditions. These conditional proba-
bility distributions have been accumulated for the
system given by Eq. (1), illustrated by the se-
quence in Fig. 3. We observe that the second-
order conditional probability distribution is ex-
tremely sharp, implying that the attractor is two
dimensional (sheets), which is indeed the observed
structure. Other methods for determining the di-
mension of attractors will be reported elsewhere. "

The presence of observational noise in an ex-
periment would be manifested in the increased
width of the sharpest peaks obtainable in the se-
quence of probability distributions. For a noise
level of 5, the width of the nth (sharp) probability
distribution should be -n6. Thus for high-dimen-
sional attractors, low-noise data is of paramount
importance.

We have outlined techniques for reconstructing
a phase-space picture from observing a single
coordinate of any dynamical system. For sys-
tems which have only one positive-characteristic
exponent along with sufficiently simple topology,
we can obtain its value. We have also outlined
a procedure for determining the dimensionality
of an attractor from the observation of a single
coordinate. All these techniques should be direct-
ly applicable to time series obtained from observ-
ing turbulence, as well as any other physical sys-
tem, to construct a finite-dimensional phase-
space picture of the system's attractor, provided
such a low-dimensional structure exists. These
ideas have recently been utilized by Roux et al."
to construct a phase-space picture of the chaotic
attractor underlying chemical turbulence in the
Belousof- Zhabotinsky reaction.
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FIG. 3. Conditional-probability-distribution sequence
for Eq. (1): (a) x vs P(xi x&, t); (b) x vs P(xi x&, x2, t);
where x& = 0, x, = 0.495, and t = 0.2 time units.
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Experimental Observation of the rf-Driven Current by the Lower-Hybrid Wave
in a Tokamak
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It is observed that the waves launched from a phased array antenna of four waveguides
couple effectively with electrons under the condition of p/+~/ (0)- 2.0. This coupling
generates a rf-driven current, rather than heating of the bulk electrons, and the current/
rf-power ratio of 110 A/kW was obtained with a rf power of 125 kW' radiated into a plasma
which included appreciable suprathermal electrons.

PACS numbers, : 52.35.Fp, 52.35.Mw, 52.40.Fd, 52.50.Gj

A tokamak, which is the most successful device
now on the road to controlled fusion, has the
major disadvantage of pulsed operation because
of a need to induce a toroidal current in the plas-
ma. The application of rf to drive the current in
steady-state tokamak reactors has been consid-
ered by a number of authors. ' ' A method of
producing continuous current carried by electrons
in the tail of distribution function via quasilinear
Landau damping of high-phase-velocity rf waves
near the lower hybrid (LH) frequency has been
proposed. "The linear and quasilinear Landau
damping of slow electrostatic waves near LH fre-
quency has been confirmed in a linear test device'
and in the LH electron heating experiment on the
tokamak (Doublet IM). ' These experiments pro-
vide a physical base for understanding the quasi-
linear Landau damping in the toroidal plasma
with a relatively high. electron temperature. Re-
cently, the current generated by the unidirection-
al electron plasma waves has been observed in
linear devices" and a toroidal device. ' These
experiments have been carried out in a plasma
with a lower electron temperature, in which a
transfer of momentum from LH waves to elec-
trons via collisional absorption is significant.

In order to make effective coupling between the
LH waves and electrons, it is necessary to avoid
the deposition of the rf energy into ions resulting

from the linear mode conversion and the excita-
tion of parametric instabilities. The previous
experiments on the rf ion heating indicated that
for ur, /~, „(0)a 1.6 the ions did not interact with
the rf waves and the parametric decay instabili-
ties almost disappeared, ""where ~, is the fre-
quency of the applied rf field and ~»(0) is the LH
frequency at the center of the plasma column. In
this Letter, we report the experimental study on
the coupling between the rf waves and electrons
under the conditions of ~,/~»(0) = 2 and the re-
latively high electron temperature in a tokamak.

The experiment, with a 750-MHz rf source,
was performed in the JFT-2 (JAERI Fusion Torus)
tokamak, which was a conventional tokamak with
a major radius of HO=90 cm and a minor radius
of a = 25 cm. The experimental setup and the dis-
charges were reported in detail, " and hence will
be described only briefly here. In the present
experiment, the following discharge was used as
a magnetohydrodynamically stable operation;
toroidal magnetic field B,=14 ko, plasma current
I~= 30 kA, mean line-of-sight electron density n
=3 &10" cm ', central electron temperature T~
=(250 eV)/k and effective ionic charge Z, ff of
2-5. The working gas was deuterium. The wave-
guide array employed here consists of four inde-
pendently driven waveguides mounted 1.5 cm
away from the plasma edge, which is defined by
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