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Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity
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lt is theoretically shown that the transmitted light from a ring cavity containing a non-

linear dielectric medium undergoes transition from a stationary state to periodic and

nonperiodic states, when the intensity of the incident light is increased. The nonperiodic

state is characterized by a chaotic variation of the light intensity and associated broad-
band noise in the power spectrum. The experimental possibility of observing such a
transition is also discussed.

PACS numbers: 42.65.Bp, 05.40.+ j

Bistability seen in the optical transmission of a
cavity filled with a nonlinear medium has ac-
quired much attention from its applicability as
an optical device' ' as well as from the theoreti-
cal side since it offers a typical example of the
first-order phase transition in systems far from
equilibrium. ' Recently the possibility was
pointed out that the transmitted light from such
a cavity exhibits periodic self-pulsing under suit-
able conditions. '

On the other hand, it is being recognized as a
fairly universal fact that nonlinear systems far
from equilibrium undergo a sequence of transi-
tions from a stationary state to periodic, and
finally to nonperiodic states, when parameter
values involved are varied. " Such transitions
will be found in various areas of the natural
sciences, '" as exemplified by the transition
from laminar flow to turbulent flow in fluid sys-
tems. " It is therefore reasonable to expect that
the bistable optical system is also a candidate for
investigating such a transition, which will be
demonstr ated theoretically below.

Let us consider a ring cavity cont'aining a non-
linear dielectric medium of length /, as illustrat-
ed in Fig. 1(a).'" Mirrors 1 and 2 have reflec-
tivity R, while mirrors 3 and 4 have 100% reflec-
tivity, so that a part of the transmitted light is
fed back to the medium. The slowly varying (com-
plex) envelope of the electric field at time t and
position z in the cavity, E(t, z), satisfies the
boundary condition

E(t, 0)

=(1 —R)'~'E~+R exp(ikL)E(t (L —l)/c, l ), (1)—
where E~ is the envelope of the electric field of
the incident light, k its wave number, and L the
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'j(t) = —q(t) + sgn(n, ) IE(t —t„)I'.
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FIG. 1. (a) A ring cavity containing a nonlinear di-
electric medium. (b) IE, I vs A relation for B = 0.4
and yo = 0. The states corresponding to the shaded
ranges on the IE, I axis are unstable.

cavity length.
We assume that the response of the medium is

described by the Debye relaxation equation. Under
the boundary condition (1), the Maxwell-Debye
equations which govern the dynamics of the sys-
tem are integrated with respect to the space
variable and lead to the coupled differential-dif-
ference equations"' "

E(t) = A + BE(t —ts) exp( i[(p(t) —y, ]f,
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FIG. 2. (a) Plot of 5000 successive points of a series
E„on the complex E plane. The parameter values
chosen are B = 0.4, A = 3.9, and yo = 0. (b) Enlarge-
ment of the rectangular region of (a).
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Here the electric field is scaled in a dimension-
less form by E(t) = (k In, I (1 —e ')/u) ~'E(t, 0),
where n is the absorption coefficient of the med-
ium and n, the quadratic coefficient of the non-
linear refractive index. The intensity of the trans-
mitted light is given by (1 -R) exp(-ut) IE(t —I/c)I'.
Variable y(t) in Eqs. (2a) and (2b) denotes the
phase shift suffered by the electric field in the
medium, and y, is a mistuning parameter of the
cavity. y is the Debye relaxation rate. Param-
eter A is defined by A =—f(1-R)k In, I(l —e "')/
u) ~'IE, I, which is proportional to the amplitude
of the incident field. Parameter B, defined by B
—= R e '~' (&1), characterizes the dissipation of
the electric field in the cavity. Time delay t„

L/c originates fr—om the propagation of light.
Hereafter we confine ourselves to the case of n,
~0 14

The stationary solutions of Eqs. (2a) and (2b),
denoted by E„are given as a multivalued func-
tion of A, satisfying
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FIG. 3. IEI' vs time for B = 0.3, ~s = 3.5, y, = 0,
and (a) A = 2.17, and (c) A = 2.85; power spectrum of
IEI' for B = 0.3, 7s = 3.5, yo

= 0, and (b) A = 2.17,
and (d) A. = 2.85. The solid and broken vertical lines
in (b) and (d) indicate Iim(&) I/2' of the unstable and
stable modes, respectively.

[1+B'—2Bcos( IE,I' —y,)]IE,I'=A', (3)

which is illustrated in Fig. 1(b). In the limit of
1 —B«1, y, «1, and A «1, Eq. (3) is reduced
to the bistability relation discussed by previous
author s."

These E, are not always stable. To demonstrate
this, let us first consider the limit of g~y —~,
where the medium responds to the electric field
adiabatically. In this limit, Eqs. (2a) and (2b)
are reduced to the difference equation

E(t) =A+ BE(t —t„)exp(i[ IE(t —t„) I2 —y, ])
=- U[E(t —t„)].

A linear stability analysis reveals that the station-
ary solutions of Eq. (4) are stable only if 0 & G '
&2(l+B'), where G is defined by G=-dIE, I'/dA'.
Considering that G '-2A'B sin(IE, I' —yo) for A'
»1, we, know that most of the stationary solu-
tions are unstable for A'B»1 [Fig. 1(b)].

What solution then appears when E, becomes
unstable? By using a computer we have traced
the time series E„=—E(nts) and have found that,
when parameter A is varied in such a way that
G ' gets over 2(1+B'), the series E„undergoes
successive bifurcations, forming a periodic set
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of 2' points, 2' points, 2' points, . . . , successive-
ly, and finally gets into a chaotic one wandering
in an apparently erratic manner. Figure 2(a)
shows the plot of 5000 successive points of a
series E„ in the chaotic regime, starting from
an arbitrarily chosen initial point E, = (3.9, 0).
The series E„ itself is very sensitive to the
choice of the initial point, but the "curves" on
which E„wanders, except for the first few points,
are indeperident of it. In this sense these "curves"
may be regarded as a strange attractor. '" The
strange attractor in Fig. 2(a) exhibits a complex
structure, as seen in Fig. 2(b), but its rough
shape is expressed by a spiral

))E -Ai'=B'[arg(E -A) + y, ]

for small B, which can be derived analytically.
Physically this erratic wandering of E„may be
attributed to large, field-dependent phase shift
suffered by the electric field each time it travels
around in the cavity.

However, even in the limit t~y-~, the descrip-
tion of E(t) by Eq. (4) is valid only in a limited
initial range of time. The reason is as follows.
Assume that E(t) slightly fluctuates in the time
interval 0 (t (tz and let E(t,) gE(t, ) (0 (t, gt, (t~).
In the chaotic regime, their n-fold images
U" [E(t,) ] and U" [E(t,) J fall on quite different points
on the strange attractor. Therefore a slight fluc-
tuation in the initial time interval develops into
a wild orie, its characteristic time becoming
shorter and shorter, with the increase of n.
%hen the characteristic time of the fluctuation
has been reduced to the order of y ', the adiaba-
tic approximation breaks down and the left-hand
side of Eq. (2b) can no longer be neglected. In
order to study this stage, we have to return to
the original Eqs. (2a) and (2b).

The stability of the stationary solutions of Eqs.
(2a) and (2b) can also be determined by a linear
stability analysis. The amplification rate A of a
small fluctuation added on the stationary solution
satisfies the characteristic equation

1+2B[-cos(iE,P —yo) +
i E, i' sin( i E,i' —yo)(A/y+ 1) '] exp(-tzA) + B' exp(-2tzA) = 0. (6)

One may regard iA. as the eigenmode frequency of the fluctuation. For the sake of simplicity let us con-
fine ourselves to the case of B «I and A'B-O(1). In this case Eqs. (2a) and (2b) are approximately re-
duced to the one-variable differential-difference equation for p(t),

y 'j(t) = —q(t)+A'{I+2Bcos[q(t —t~) —y, ]];
E(t) is given by iE(t)i'=A'(I+2Bcos[y(t —t~) —yo] j. Correspondingly, Eq. (6) is also simplified. It
is not difficult to investigate this simplified equation and to obtain the following results: For 0 & Q '(2,
all Re(Z) are negative, so that the stationary solution is stable. For G ) 2, a pair of eigenmodes iX
and iA. becomes unstable each time the dimensionless parameter v~=—t„y exceeds one of the critical
values

T„~" = G(1 —2G) '~'((2n+1)w —arccos[G(1 —G) '] j
That is, the stationary solution is stable only if
~R ~R(o)

To investigate what occurs when this condition
is not satisfied, we have solved Eq. (t) numerical-
ly for various numbers of unstable modes, setting
B pp and 'T ~ at fized value s and varying A. In
Fig. 3 the temporal behavior of the intensity of
the electric field and its power spectrum are
shown for two choices of the parameters. In
case only one pair of modes is unstable [Figs. 3(a)
and 3(b)], the electric field exhibits a simple
periodic behavior and the power spectrum con-
sists of sharp peaks at a fundamental frequency,
which is located very close to elm(A) i of the un-
stable modes, and at frequencies of its higher
harmonics. As parameter A is varied and the
number of unstable modes is increased, a transi-
tion from this periodic state to a turbulent state

takes place [Figs. 3(a) and 3(c)j." Corresponding-
ly the power spectrum suffers a remarkable
broadening. It should be noted that the peaks in
the spectrum, which appear close to the eigen-
mode frequencies, are distributed also in the
range of frequency in which the modes are stable.
This suggests that energy flow from low-frequen-
cy unstable modes to high-frequency stable modes
is induced by mode-mode coupling. In this re-
gard the turbulent behavior in our system has
resemblance to that seen in hydrodynamical sys-
tems" and in reaction-diffusion systems, "

Finally, let us briefly discuss the experimental
possibility of observing the phenomena described
above. In systems with large T~, most of the
stationary solutions are unstable if A'B)~1, as
has been pointed out. For CS, placed in a Fabry-
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Perot cavity of 4-/-5 cm and R-0.6, for exam-
ple, the minimum incident power required for the
occurrence of a turbulent state is estimated to
be 50 MW/cm', by using the values y '-2 psec,
n, -10 "esu and k-10' cm '. This value of the
incident power can be drastically lowered if a
medium with large n, is used; 1 kW/cm is suffi-
cient for Rb vapor (y '-200 psec, n, -10 ' esu)
in the same cavity.

An equivalent system whose dynamics obeys
Eq. (8) can be constructed by modifying partly
the hybrid bistable optical device studied by
Garmjre et aE.' One has only to insert a delay
line with delay time t~ between the photoconductor
which detects the output light from a Pockels cell
modulator and the feedback circuit. If the rise
time of the detector is short enough, the equation
which governs the temporal behavior of the output
voltage is identical with Eq. (8), where y should
be regarded as the relaxation time of the feedback
circuit. In such a system the transition from seU-
pulsing to turbulence will easily be observed.

Discussions with Professor K. Tomita are grate-
fully acknowledged.
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It is shown how the existence of low-dimensional chaotic dynamical systems describing
turbulent fluid Qow might be determined experimentally. Techniques are outlined for re-
constructing phase-space pictures from the observation of a single coordinate of any dis-
sipative dynamical system, and for determining the dimensionality of the system's at-
tractor. These techniques are applied to a well-known simple three-dimensional chaotic
dynamical system.

PACS numbers: 47.25.-c

Lorenz originally demonstrated that very sim-
ple low-dimensional Systems could display "chaot-
ic" or "turbulent" behavior. ' Attractors which
display such behavior mere termed "strange at-
tractors" by Ruelle and Takens, ' who then went
on to conjecture that these strange attractors are

the cause of turbulent behavior in fluid flow. The
experiments of Gollub and Swinney have strength-
ened the conjecture, ' but the question still re-
mains: How can we discern the nature of the
strange attractor underlying turbulence from ob-
serving the actual fluid flow~
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