VOLUME 45, NUMBER 9

PHYSICAL REVIEW

LETTERS 1 SEPTEMBER 1980

Universality in Analytic Corrections to Scaling for Planar Ising Models
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It is argued that the leading corrections to scaling for planar Ising models, which oc-
cur as analytic factors, arise from the quadratic terms of the nonlinear thermal and
ordering fields (rather than from irrelevant variables). This yields oo’ + 2Beff + Yerf’
= 2 for the effective critical exponents, with no leading corrections, and is confirmed by
exact square-lattice results for arbitrary anisotropy J,/J;. For isotropic lattices the
ratios of correction amplitudes and quadratic nonlinear-field terms appear universal.
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As the critical point of a ferromagnet fluid, etc.,
is approached, the asymptotic behavior of a quan-
tity, L(T), as T—~T.*, can usually be character-
ized as

L(T)=LfM1+ay*7%+...). (1)

where L, is a constant and =T - T',| /T [which
variable proves more convenient here than the
customary ¢=(T-7T,)/T ,=+f/(1¥{)]. The expres-
sion in parentheses in (1) represents the correc-
tion-to-scaling factor to the asymptotic power
law with exponent A. It has been evident for some
time' that many real experiments, even when of
the highest precision,? do not attain the truly as-
yraototic regime. Thus, one rather observes an
_ponent!*?

)\e”=81nL/61ntA=)\+9aL*fe+..., (2)

where 7 is a suitable average of f over the range
of measurement.®* The correction factor also
plays an important role in analysis aimed at esti-
mating A accurately from series expansions for
model systems.? Accordingly the nature and ori-
gin of the leading correction term, a,*#°, for
quantities such as the free energy F, the sponta-
neous magnetization or order parameter M, and
the susceptibility/compressibility x (with expo-
nents 2 - a, B, and —¥) are matters of continuing
significance to theory and experiment.

In this note we discuss the issue for planar Is-
ing models, where many exact theoretical results
are available,’*® although the literature discussing
the corrections is somewhat confusing. Usually,
the corrections to scaling arise, in a renormali-
zation-group viewpoint,”*® from the leading irrel-
evant variables. We argue, however, that in the
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planar Ising models they arise, instead, from the
nonlinear scaling fields."*® Furthermore, we un-
cover a novel universal relation satisfied by the
nonlinear fields for different lattices and show
that the effective-exponent relation

Oeps’ +2Bess+Vess' =2 (3)

holds widely without any leading corrections.®
This follows from a general relation between
the correction amplitudes a,, ap, and a, [Eq.
(10) below]. The scaling law (3) has also been
proved recently’® to leading order in €e=4 -d (to-
gether with® a ¢’ = @ ¢r and ¥.¢¢’ =7.¢5), and seems
to agree reasonably with experiments and with
series-expansion evidence for systems of dimen-
sionality d =3 (even though it is broken analytical-
ly in higher order'!). For the d =2 Ising models,
however, we find s’ =~ to¢r and (Yers = 3)
=~ (Yets—1) (without leading corrections). For
the isotropic models we find additional universal
ratios, €.8., (Yeff, _%)/(Beff _%)= "% [See Eq. (4)
below.] Our various results invite experimental
tests and further theoretical investigation in both
Ising-like and other types of two-dimensional sys-
tem. Likewise the effects of nonlinear scaling
fields and the possibility of associated universal
relations should also be explored theoretically
and experimentally in three-dimensional systems.
To start, recall that the formal machinery of
renormalization-group analysis® shows that im-
portant corrections to asymptotic power-law be-
havior can arise from “irrelevant variables,”
that is, physical parameters beyond the one, two,
or a few “relevant variables” whose variation de-
stroys criticality (or changes the exponents). In
particular for small €=4 -d, the leading correc-
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tions in (1) are expected to occur as confluent sin-
gularities with 6 nonintegral and less than unity.
Specifically, if the leading irrelevant variable,
say w, scales under renormalization as b,
where b is the corresponding rescaling factor
for lengths, then, in leading order, the free en-
ergy should be a function only of the scaled com-
bination z =w/t*/ M =wf“Y, Here v=1/1, is the
standard correlation-length exponent and w=-2
>0. Normally an expansion of the free-energy
scaling function in integral powers of z is per-
missible’: In (1) this yields the identifications
(i) 6 =wv and (ii) a,*=b, *w, where the coeffi-
cients b, * depend only on the scaling function
which (being determined by the fixed-point vicin-
ity) is universal up to “metrical” or scale fac-
tors. Thus, vatios such as az*/ay and a,*/a,
should also be universal.'®

A crucial feature in extending this line of argu-
ment to planar Ising models, however, is the
fact that all correction-to-scaling factors are
then known to be analytic in T through 7_..°#® Re-
call also that v=1, a=0, B=1, y=% but that 7 ~*
must be replaced by — Inf. The analyticity im-
plies (i) 6=1 and (ii) ¢~ =—a,* (implying, e.g.,
Qg == @ogr). Now, using the exact results for
the spatially isotropic triangular, square, honey-
comb, and kagome lattices, one can compute'®
the a;*: Thence we find

ap*/ay=%% and a,*/a,=%%, (4)

for all four isotropic lattices—apparently a con-
firmation of the anticipated universality.

There have been various attempts recently®® 13
to account for universal features of the planar-
Ising-model correction amplitudes a *. The first
postulates were too restrictive and failed for the
kagome lattice. Later Gaunt and Guttmann'?® al-
lowed themselves a third metrical factor (basical-
ly equivalent to allowing for an irrelevant varia-
ble w) and resolved the difficulty. Rephrased, we
believe more transparently, the:only combinations
of the a¢;* which Gaunt and Guttmann find to be
universal are simple ratios such as those in (4).
Then knowledge of any one a,* or ¢~ for a given
lattice uniquely determines all the others.

In view of the result 6=1, it is certainly tempt-
ing to associate the leading corrections in the pla-
nar Ising model with some irrelevant variable,

w, scaling with an exponent w=1 and, hence, in
the same way as an inverse length. The only ob-
vious candidate for such a variable is the recipro-
cal-lattice spacing, a™' (related to the momentum
cutoff in continuum-space versions of Ising mod-
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els). However, the exact solutions for the ther-
modynamics of planar Ising models® exhibit no
such explicit dependence on a!'* This fact, com-
bined with the analyticity of the correction fac-
tors, leads us to focus on a second source of cor-
vections to pure power laws within renormaliza-
tion-group theory: Explicitly, the full nonlinear
recursion relations, like

' =£bMI+ R, (O 2+ R (D)% + ..., (5)

where & is the ordering field, can be replaced by
purely linear relations, provided that suitable
nonlinear scaling fields are introduced.”’® For-
mally one may construct the thermal and order-
ing nonlinear fields as analytic functions,

g, =xf[1+c,f+0(F?,n?)], (6)

gp=hll£c,i+0(?,n%)], (7

such that the linear recursion relations g,’ =b g,
and g,’=b*g, are satistied without further cor-
rections. [Note that in writing (6) and (7), asymp-
totic symmetry under % — -k has been assumed.]
The singular part of the free energy should then
scale as

F (T,h)~|g,|>°Y.(g,/1g,1?), (8)

with A=8+v, and where now we neglect any irrel-
evant variables (which, however, should in prin-
ciple also enter the nonlinear scaling fields). On
substituting (6) and ('7) and differentiating as re--
quired, we recapture (1) but now with the identi-
fications (i) 6=1 and (ii)

ag*=+(2-a)c,,
ay==-c,—Bc,, (9)
a,*=+(2c,-vc,).

Notice first that these expressions satisfy

ap” —2ay,+a,"=0,

(10)

from which the effective-exponent relation (3) fol-
lows (to leading order) immediately and quite
generally! Second, specialize to the planar iso-
tropic Ising models and use either member of (4)
to match (9): One discovers that bo¢% lead to the
identical vesult velating the two nonlinear scaling
fields, namely,

®(1)=c,/c,=1, (11)

which thus appears as a universal ratio over the
isotropic planav lattices. Consequently, all the
leading correction-to-scaling amplitude ratios
for the spatially isotropic planar Ising lattices
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seem to be dictated by a single universal ratio of the quadratic terms in the nonlinear scaling fields.
To check the generality of these surprising results, consider the anisotropic square lattice with

coupling constants J, and J,=kJ, along the x and y axes.

ag =+ T,(1+ k%0 ?)K °/(1+«ko,),

u =1 =372 = 4k7 7, + k%1 - 37,2)] K,

where K;°=J,;/ks T,, 0,=sinh2K,°, and 7, =cosh2K,*
(i=1,2). An explicit expression for ax'r in terms
of z,°=tanh K,° is given in Ref. 6a, Eq. (16). At
the cost of some algebra which relies heavily on
the in-criticality conditions 0,0,=1=2,°+2,°
+2,°,°, one can now verify that the relation (10),
and thence (3), holds as an identity for all anisot-
ropy k—a remarkable results which strongly sup-
ports the contention that the leading correction
terms in the planar Ising models arise solely
from the nonlinear scaling fields.

One discovers, however, that the ratio ®(k)
=c,/c, does have a nontrivial dependence on
even though ®&(1)=1 for all four standard lattices;
likewise the ratios in (4) depend on k. For the
anisotvopic case we thus conclude that the ratios
(4), and hence ratios like (Yc¢1’ = 3)/(Bess — %), have
explicit dependence on « (and therefore are non-
universal!). Actually this dependence on k should
not be so surpising since spatial anisotropy is be-
lieved to be a mavginal operator in the renormali-
zation-group sense.'® Furthermore, one knows?®
that the anisotropy of the planar—-Ising-model cor-
relation decay, even at T,, depends explicitly on
k. One may conclude that a line of fixed points
describes the variation of certain features, like
the nonlinear scaling fields with k, even though
the exponents and thermodynamic scaling func-
tions remain invariant.

Finally, a comment ond=3. Clearly, different
origins for the leading correction terms in d=2
and for d < 4 preclude any simple interpolation of
ratios such as ay*/a,* between the two limits. In
d =3, where most evidence indicates®” wv ~0.5,
the mechanism of the irrelevant variable is proba-
bly the most important source of corrections to
scaling. However, the nonlinear scaling fields
and the resulting analytic corrections must still
play a role: This could be especially significant
if w is relatively small (as seems to be indicated
by series-expansion studies* for general spin-S
Ising models, which suggest that w is close to
zero for S=3). The competition between both
types of correction terms might then be impor-
tant in a definitive elucidation of the series expan-
sions.'2°:17,

15/ 87,(1+ko,),

One can then obtain®*®
(12)

(13)
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Interactions of 209-GeV muons in the multimuon spectrometer at Fermilab have yielded
20072 dimuon final states, with (81+10)% attributed to production of charmed states de-

caying to muons.

The cross section for diffractive charm muoproduction is 6 9_1 4 nb.

Extrapolated to @%=0, the effective cross section for 178~ (100-) GeV photons is 750f%§8

(560730 nb.
PACS numbers:

Real- and virtual-photon beams are able to elu-
cidate charm production in hadron reactions be-
cause they substitute charge for color coupling
at one vertex. Charm and forward-y photoproduc-
tion rates limit the YN total cross section without
assuming vector-meson dominance (VMD), and
within VMD yield the ratio of elastic to inelastic
YN scattering.! Charm muoproduction data di-
rectly test the photon-gluon-fusion (yGF) model,?
which uses elements of quantum chromodynamics.
This Letter presents charm-production cross sec-
tions which impose significant model constraints.
Differential spectra appear in a second paper.?

One model-dependent measurement of the
charm-muoproduction cross section at 270 GeV
has been reported* as 3+1 nb. Wide-band photon-
beam experiments have measured cross sections
for inclusive D° production averaged from 50 to
200 GeV of 464+ 207 nb® and 295+ 130 nb.® In no
case has discrimination between charm-produc-
tion models been attempted.

This experiment identifies charmed states by
their n-body (z > 3) decays into muons. Unre-
solved charmed hadrons contribute in proportion
to their production rate and leptonic branching ra-
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tio. While unsuited to a first observation of
charmed states, this continuum charm signature
is the only reasonable explanation for (81+10)%
of the 20072 single—-extra~-muon events reported
here. These high statistics, coupled with full de-
termination of virtual-photon four-momenta, per-
mit the study of charm-production mechanisms.
The spectrometer has been described earlier.’
The = 2 trigger required a = 20-GeV hadronic
shower = 2 m upstream of > 2 hits in each of
three consecutive trigger hodoscopes. Full track-
ing capability in an area including the beam pro-
duced a high, nearly @*-independent acceptance.
Data are reported from 1.4 x10' positive and 0.3
x 10 negative Fermilab beam muons at 209 GeV.
For u*u* or p~u~ final states, the scattered
muon is chosen to be the more energetic muon.
This algorithm is 91% successful when checked
using 4 *p~ events. Regions of rapidly varying
acceptance are excluded by requiring daughter
muon energies to exceed 15 GeV, vertices to lie
in the upstream 60% of the target, and shower
energies to exceed 36 GeV. Muon trident contam-
ination is reduced by requiring the daughter mu-
on to possess = 0.45 GeV/c momentum transverse
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