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The two-point function of the two-dimensional Ising model at arbitrary temperature is
expressed in terms of the solution of a nonlinear partial difference equation. From this
difference equation the known results for the two-point function of the Ising field theory
may be regained as a special case.

PACS numbers: 05.50.+q

In the past several years much exact information about spin-correlation functions of the two-dimen-
sional Ising model has been obtained. In particular, dispersion expansions of the two-spin and more
generally of n-spin correlations' have been obtained. In the scaling limit the two-spin" correlation
has been expressed in terms of the solution of the sinh-Gordon equation. Furthermore, Sato, Miwa,
and Jimbo showed that nonlinear partial differential equations can be found for the n-point functions
in the scaling limit. Because of the field theoretic interpretation of this scaling limit" these nonlinear
equations are of great importance.

It is the purpose of the present note to point out that the connection between the correlation functions
and closed systems of equations occurs on an even more fundamental level. At arbitrary temperatures,
not necessarily in the scaling limit, the n-point correlation functions can be expressed in terms of non-
linear partial difference equations. The differerkial equations mentioned above can be reproduced by
taking the scaling limit.

These difference equations have several important consequences.
(1) From the difference equations we may determine the boundary conditions on the scaling-limit dif-

ferential equations. These boundary conditions connect the scaling behavior to the underlying lattice
and are an expression of the renormalization procedure used to construct the field theory.

(2) These difference equations may be used to study questions such as corrections to the T= T, large-
separation behavior of the correlations, and the value of the susceptibility of the antiferromagnet at T, .

While the procedure of dealing with the n-spin correlation function is elementary and is basically the
same for all n, there are several technical complications for n & 2, such as the doubling of the number
of dependent variables, that make it difficult to present in a concise and clear manner. Therefore, we
shall confine our attention here to the two-point function. These present considerations may be viewed
as a generalization of the procedure of Ref. 4, not Ref. 3 or 5.

Let E, (E,) be the horizontal (vertical) interaction energies, let N (M) be the horizontal (vertical) co-
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ordinates, define'

z,. = tanh E; /k T, i = 1, 2,

a(x, y) =a ——,'y, (x+x ') ——,'y, (y+y '),
with

g =(I +z,')(I+z2'), y, = 2z, (l —z,'), y, = 2z,(1 —z,'),
and let'

aft =
~
1 —[sinh(2E, /k T) sinh(2E, /k T) ]

Further, we follow (3.66) and (3.99) of Ref. 1 and (15) of Ref. 3 to define

(2)

(3)

f„„(~;{~j)=1+ P ~2"f„„~'"~({~)),
n =1

with

2n-1 + -1
rr l l+1

l =1 l l+1 l
(6)

and define

G(M, N; A,; {e))= Q A. "G ' "(M, N;{ej),
k =0

with

G~ 4"'~(M N (E))=(—'1) y
' '~

y
' ' n . ' ! ll '(x y ))

2k +1 d@ dy
2vz~ 2' zyl=1

(7)

-M M ~, ~
—N

2k +l +l +1' 'x2a+i yi ' ' 'y2a+i g . -i ~

r = —yl&l + +&l (8)

Here the integration contours are ~x, ~= ~y, ~=l and each e, either-0+ or 0—.Then, when MgO, we

have for T & T,

(croo o~„)=%' exp — 5~ Inf»(1; {e)),
k=8

and for T&T,

(Qa)

(o»o„„)=9)PG(M,N; 1;{e)) exp — Q Inf»(1; {e~). (9b)

In (6) and (8), if M w0, we may carry out the x, integrals by closing on the zeroes of 6 and find that
there are infact no poles in y, . Thus, when Mw0, (9) is valid for all sets {e). When M=O, however,
there are additional contributions from x, =o and ~ which do lead to poles in y, . These extra terms
must be canceled if (9) is to hold for M=0. This may be efficiently carried out if we define

G'(M, ¹ A.) = G(M, N; X; e» = + e, e» „=+ ~) (10a)

f4Ã ( ) fiMÃ(~i 2l I 2I+1 (10b)

with e-O'. Then (9) holds for M=0 and N&0 if we use G' and f»' and for M=0 and N &0 if we use G
and f» . We also have

G'(M, N; A) = G (M, N; A.) if M g0, (11a)
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and

c'(0, 0; ~) = G-(o, 0; x) . (11b)

Because of (11), it is useful to define

G '(M, ¹ A) for all M and N except M = 0 and N& 0,
G(M, N; A.) =

G (M, N; A.) for all M and N except M = 0 and N &0,
(12)

and similarly for f„„(A).
We proceed to indicate the derivation of the partial difference equation for G(M, N; A). The following

two elementary algebraic relations are needed:

y,(1 —x,x, ')(x, '-x, ) =-y, (1 —y,y, -')(y, ' —y,)+n(x„y,) —a(x„y,)

and

2l+1 2j 2l+1 2J 2l+1 2l+1 2l 2l
l =0 l=O l=0

l l l-1 1=- z z~~-... , .,-)~~-...*.„,-) n...„n...-" n.„„-n ...).j=l / =i m —J $=J-1 m=j

In view of the appearance of y, and y, in (2), the useful lattice I.aplacian is

V& 4(M, N) = y~[C'(M+ 1, N) + 4&(M —1, N) —24(M, N) J +y2[4(M, N+ 1) + 4'(M, N —1) 24(M, N—) J.
From (13) and (14), the application of the lattice Helmholtz operator to G gives, after extensive rear-

rangementt,

[ V& —2(a —y, —y2) ] G(M, N; A) = y2L(M, N;—A, ) [G(M + 1, N; A) J+ G(M —1, N; A, ) ]+M N (16)
for all M and N except M=N =0. In the exchange M —N we always include y, —y, . Here L is given by

L(M, N; A.) = H(M, N; A.)H(18; N; A) —G (M, N; A.),
where H and H are defined in the same way as G except that there are extra factors of y2$ ] and
respectively, in the integrand. Repeated application of (13) then leads to the recurrence relation

(17)

(y~ y2G(M+ 1, N; A.) G(M —1, ¹ A.)

y ,y2 G(M, N + 1; A.) G(M, N —1; A.)) (L(M, N, A) )
1 LM, ¹Z

C'(M N ~) —C(M, N+1; ~)G(M, N I;~)-
G'(M, N; A.) —G(M+ 1, N, A.) G(M —1, N; A, )

where L is obtained from L by M —N.
It is now straightforward to solve (18) and substitute into (17) to find for all M and N except M = N = 0

where there is a source

[ V~ —2(a —y, —y, ) ] G(M, N; A.)

= -[ 1 —G(M+ 1, N; y) G(M —1, N; A) G(M, N + 1; A) G(M, N —1; A) ] '[G(M+ 1, N; k) + G(M- 1, N; A) j

x J y, [G'(M, N; A.) —G(M, N + 1; A.) G(M, N 1; A. )]-
y, G(M, N —1; A) G—(M, N + I i A) [G (M ~ Ni A) G(M + 1, N; A.) G(M —1, N; y) ]J+M —N.

This is the desired partial difference equation for G.
A more symmetrical form of (19) is

2a G(M, N; A) [1 —G(M + 1, N; A. ) G(M —1, N; A.) G(M, N + 1; A, ) G(M, N —1; A.) J

= [ yz+ y2G (M, N; A) ] JG(M + 1, N&A) + G(M —1, N; A) —[G(M, N+ 1; A) + G(M, N —1; A)]

x G(M+ 1, N; A.) G(M —1, N; A)]+ M N.

Thus G and G ' satisfy the same equation.

(19)

(20)
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The partial difference equation satisfied by

rj(M, N; jj.) = [1 —G(M, ¹ A.) J [1+ G(M, N; A.) J

[(a —y, —7',) —(a +r + 7', ) vp J [ rj'+ rj + rj. + rj- J

+ [(a + Yl + 72) .
(a Yl 7 2) rj J [rj rj+rj + rj'rj, rj + rj 'rj rj + rj 'rj rj, J+ 2(y, —y, ) rj(rj'rj —'jj, rj ) = 0,

(21)

(22)

where

rj' = rj(M + 1,N; X), rj, = rj(M, N + 1; A.) . (23)

In the scaling limit" ' (22) simplifies to a Painleve equation. Thus (22) may be called a lattice Pain-
levd equation. The exponential change of variable g=e then gives the lattice sinh-Gordon equation
satisfied by g.

Finally we must relate f»(A) to G(M, N; A). This is easily obtained by calculating a first difference

f«„«(A) f««(A—) = G(M, ¹ A) G(M+ 1, N+ 1; 3)f„„«(A)—G(M+ 1,N; A) G(M, N + 1; A)f««(A) . (24)
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