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action (1). Classical deflection function calcula-
tions' for the ion-pair-mediated process (2) show
that the impact-parameter range 2.5 As b ~ 3.44
A contributes to the rainbow feature. Hence, in
this simple picture, the rainbow feature of the
neutrals would yield inelasticities between - 1.0
and 1.6 eV.

This simple model explains the lack of elastic
scattering in the rainbow region for reaction (2);
but it slightly underestimates the average inelas-
tic scattering values. Although relaxing some of
our simplifying assumptions might yield a better
fit to the data, the basic physics is clearly al-
ready contained in the model. One possible route
to larger inelasticities involves transfer from the
ion-pair intermediate surface to more highly ex-
cited neutral surfaces. The crossing radii R, '

between the ion-pair surface and higher neutral
surfaces also oscillate with time. A few exam-
ples are shown in the upper portion of Fig. 4. Al-
though the larger values of R,' seem to imply
smaller coupling matrix elements and thereby
much lower adiabatic crossing probabilities, '
there may be other factors favoring production
of electronically excited states. In fact, the radi-
al motion of the particles [R(t)j relative to that of
the moving crossing [R, '(t)j should be the radial
velocity appropriate for estimating curve-cross-

ing probabilities. In the extreme case, when the
crossing sphere is expanding rapidly and parallel
to R(t), e.g. , for 5 = 2.5 and the 2p, state of Ar in
Fig. 4, the interaction can be profoundly altered.
Significant electronic excitation might result.
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Close-coupling calculations on the atomic collisions at cryogenic energies in a 100-kG
magnetic field bebveen spin-polarized hydrogen {Hy) and deuterium {D~) have demonstrated
the resonant spin-flip process postulated by Stwalley and the importance of minimizing the
presence of D~ in the experimental preparations of bulk H~ currently in progress. Other
interesting features are presented and briefly discussed including multiple Ramsauer-
Townsend effects and direct electron and nuclear single- and double-spin-flip processes.

PACS numbers: 34.50.—s, 31.30.Gs, 31.70.-f, 32.60.+i

The stabilization of spin-polarized hydrogen
(H~) has been of considerable interest for some
time. ' Recently densities of -10"/cm' were re-
ported' and very recently new results at - 10"/
cm' (Refs 3and 4).and at - 10"/cm' (Ref. 5) have
been obtained. There is great interest in extend-
ing these to higher density where, e.g. , Bose con-
densation should occur. The H~ atoms undergo

various collision processes in the gas phase pre-
dicted' (e.g. , at T =0.1'K, B =10' G). Several of
these give rise to possible destruction mechan-
isms. ' One of us' has predicted a destructive ef-
fect for D~ impurities in H~ because of field-de-
pendent scattering resonances, corresponding to
weakly bound singlet molecular vibration-rotation
levels (long-range molecules). ' For example,
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the v=17, J=O level of the HDX'Z ' state lies
-4.96 'K below dissociation. The Feshbach scat-
tering resonance associated with this level gives
long time delays with appreciable singlet charac-
ter and implies a small but significant destruc-
tive process at high density if D~ impurities are
present. The very slight degree of adiabaticity
in the avoided crossing between singlet md trip-
let hyperfine potential curves is important in es-
timation of the field/temperature conditions need-
ed for stability of H~. In other words, spin-ex-
change arises from adiabatic collisions via the
hyperfine interaction between two atoms. ' Our
purpose here is to give a preliminary but quanti-
tative report of various cross sections (elastic
and inelastic) in H-D scattering to verify these
predictions. The results given here are all at B
= 10' G, since experimental programs to produce
H~ (including the one at our laboratory) are using
such fields, although we have other results (e.g. ,
at 1(P G, n =0-4).

The close-coupling formalism has been adopted
in our numerical calculations. This presents a
reasonable representation for the low-energy
scattering process. Vse of the Landau-Zener-

where E, = —,'[E ('Z +) +E('Z„')] and E„=2[E ('Z ')
-E('Z„')]; E ('Z +) and E('Z„') are the precisely
known potential curves of H, by Kolos and Wolnie-
wicz [(0.4 —12)a,]." The C„C„and C„ long-
range coefficients are given by Hirschfelder and
Meath. " Because the total spin angular-momen-
tum projection M[ = m(S, ) + m(S, ) + m(I„) + m(Io) ]
along the B-field direction remains a good quan-
tum number, one can block diagonalize the HD
24x 24 matrix into two one-dimensional, two four-
dimensional, and two seven-dimensional subma-
trices. '" For example, one of the sets of coup-
led equations involving the collision of H+D
(which we present here) is the case of M = ——„a
7x 7 matrix. In considering only S-wave scatter-
ing (which, of course, dominates at very low T),
it is a seven-channel problem. In this particular
case, the diabatic basis set !g„, $D) which is ex-
panded in terms of spin basis functions!m(S, ),
m(I„);m(S,),m(ID)) is given in Table I. It is easily
recognized that channels 1 and 2, channels 3-6,
and channel 7 correspond to the M~ = —1, 0, and
1 asymptotes (Fig. 1 in Ref. 1), respectively.

We have summarized our numerical results
for various cross sections in Fig.- 1 for energies
ranging from 0 to 100 K with respect to the as-

Stueckelberg (LZS)' model seems inadequate un-
der our conditions. While I ZS approximation
does treat electronic degrees of freedom quan-
tum mechanically, translational degrees of free-
dom are treated classically or semiclassically.
This is inappropriate here since de Broglie wave-
lengths are tens or hundreds of angstroms. It is
interesting to note that estimates with the LZS
model are usually 2 to 3 orders of magnitude
larger than the accurate inelastic cross sections
reported below.

In the general theory of inelastic collisions, the
full wave function expanded in terms of the unper-
turbed (diabatic) orthonormal eigenstates gives
the close-coupled equations. Following the work
(and notation) of Mies, "one has the coupled equa-
tion

G" + (2p/h')(E 1-U)G = 0,

where the potential-energy matrix element U, , (R)
=(i!Ko!j) is expanded in terms of the basis set
(diabatic states) consisting of the two atomic
product states! i) and! j) (-=!$„,gn)). ' The effec-
tive Hamiltonian, K„ is written explicitly (ne-
glecting a small relativistic effect)" as

A A A A

h'(g H IH gD~D) B +H~ ~H +D~2 ~De

! ymptote of channel 1. The two vertical lines in-
dicate the approximate threshold energies for the
channel opening at 100 kG corresponding to a sin-
gle electronic spin flip [M(S) = —1 to 0] and a
double electronic spin flip [M(S) = —1 to 1]. Both
elastic and inelastic collision cross sections in-
volving channel 1 are given. The detailed behav-
iors of the channel opening and resonance regions
are also separately shown in insets a, b, e, and
d (labeled on the main figure).

(i) Q». The elastic cross section of channel 1.
There are two Ramsauer- Townsend zeros" (one
of which is shown in detail in inset b) reflecting
the character of the H, ('Z„') potential having a
largely repulsive core and a weak attractive tail.
This has been implicitly shown by Buckingham,
Fox, and Gal" (with less-accurate potentials) for
the H-H collision. As predicted, the Feshbach-
scattering resonance is found at EI, = 8.5169 K
(inset a). An independent check with an eigenval-
ue program gives the v = 17, J= 0 vibration. -rota-
tion level at 8.49'K." We obtain a resonance
width of 0.000 144 'K (time delay = 3.3&& 10 ' sec)
compared with 10 ' sec estimated previously. '
At the zero-kinetic-energy limit in inset b, Q»
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TABLE I. The eigenenergies (at 8 =, B=100 kG) of the seven hyper-
fine potential-energy curves with projection quantum number M=- ~. The
channel number increases from the lowest-energy state with the dominant
expanded spin basis function shown. The type of transition from channel
1 is also given.

C hannel
number

Asymptotic
energy

(K)

Dominant spin
basis function

lm(S, ),m gQ;m(S, ),m(EQ)

Transition
from channel 1

Electronic Nuclear
Spin flip Spin flip

26.916 41
13.504 87
13.495 42
13.470 86
13.445 55
0.043 61
0.0

Il/2, —1/2; 1/2, —1)
I
—1/2, —1/2; 1/2, 0)
Il/2, 1/2; —1/2, —1)
Il/2, —1/2; -1/2, 0)
I- 1/2, 1/2; 1/2, —1)
I
—1/2, —1/2; —1/2, 1)

I
—1/2, 1/2; —1/2, 0)

double
sin.gle
single
single
single
none

elastic

double
single
single
single
single
double

The complete expansion for channel 1, for example, is I1)
= 0.9999964573 I- 1/2, 1/2 —1/2, 0) —0.000 8263305 I

—1/2, 1/2; 1/2, —1)
—0.0025303314 Il/2, —1/2; —1/2, 0)+0.000 0002091 Il/2, —1/2; 1/2, —1) .

converges to a finite value - 2.54a,'. This allows
the estimation of the scattering length A for H ~-
D~ scattering via 'Z„' potential based on the ef-
fective-range theory, "i.e.,

Q„= 4'',
1

A = —(2.54/471)'/'ao = —0.45ao = —0.24 A.

(ii) Q»'. The inelastic cross section of channel
1 to 2. This is a double nuclear spin-flip proc-
ess; [m(t„) = —,———,'] and [yg(ID) =0-1]. It has a
small magnitude except in the resonance region
shown in inset a. Note also the zero-energy lim-
it shown in inset d. A careful examination of in-
set d gives

Q» ~ (E -E,) '/' ~ k, as k, -0.

Detailed balancing implies that

Q»= (k, /k, ')Q»cr. k, ' as k, -O,

Q, -0, Q, — ask 0,

where k, and k, are the wave numbers corre-
sponding to asymptotic channels 1 and 2.

(iii) Q», Q».' The electronic single-spin-flip
cross sections of channel 1 to 3 and channel 1 to
5. Q» and Q» agree within the width of the curve.
Since the respective dominant spin basis func-
tions of channels 3 and 5 have the same nuclear-
spin states, Q» and Q» are expected to be close
except near threshold (inset g).

CU 00

Ht+ Dt ( IOO kQ )

CHANNEL I

! I/2, I/2:-I/2, 0)
M =-I/2

a

lb
0-

-I—

-2-
I

I4' I6

-10-

0 20 40 60 80 IOO

E ('K)

Ja

2-

] L~CI,
/'

E

8.5I5 8.5I7 8.5IC)

'

Jb

0

DJ Cr
C3

C3
0-

CU Q
(3

C3

-2
00 O. I 0.2 03J a,

„' -'---'--
~ c - !4~

I

I Q

IE ~E E~I lE6
7
l344 I3.48 l3.52

Jb
CU 0 -8- (

l2

IO t 2,

00 O. l 0.2 0.3
E('K)

FIG. 1. Elastic and inelastic collision cross sections
Q~~ for H-D collisions with M= —z at 100 kG (for de-
tails, see text).
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(iv) Q„,Q„: The electronic single- spin-flip
cross sections of channel 1 to 4 and channel 1 to
6. Q,, and Q„agree within the width of the curve.
Again, Q,» and Q„are expected to be close ex-
cept near threshold (inset c) because the domi-
nant spin basis functions of channels 4 and 6 have
the same nuclear-spin states.

(v) Q». The electronic double-spin-flip cross
section of channel 1 to 7.

We note that the electronic spin-flip cross sec-
tions at 100 kG [(-10 ~-10 ')a,'] are much small-
er than those at 0 G (- 10a,'). The order of mag-
nitude of the H-D spin-Qip cross sections agree
with those of H-H collisions given by Allison. "
Detailed study of H-H collision spin-exchange
cross sections including hyperfine interaction at
nonzero fields is currently being completed. Gen-
erally speaking it is the large electronic Zeeman
splitting which results in several orders of mag-
nitude smaller cross sections for electron-spin
Qip. This excludes the resonance and the zero-
energy limit where the inelastic effect may be-
come stronger than the elastic one. Qualitatively,
the larger the magnetic field strength, the small-
er the spin-flip cross section one expects.

The above spin-exchange cross sections can be
used to estimate the destruction rate of the H~

system for a given kinetic temperature and a giv-
en density. The rate constant kHD is defined by"

kHD(T) =cf" dEQHo(E)Ee si"

where E~ is the threshold energy.
We have seen the threshold divergence of Q»

cc (E E,) ' '. H-owever, the factor EQ will not
be significant until E is close to the resonance
region where Q» (or Q») has a relatively large
contribution. At 100 kG, HD has a threshold en-
ergy at 8.517'K. k» is expected to be reduced
by the small width [full width at half maximum
(FWHM)] of sharp peak, b „D =0.000144'K; and

by the Boltzmann factor exp(-E~/kT) at very low
temperatures. Nevertheless, it still is large
compared to the rate constant for H-H spin-flip
collision, kHH, whose spin-flip threshold energy
is about 13.4'K. The width (FWHM) of H-H spin-
Qip collision, hHH, can be estimated through the
following equation:

exp[- (13.4+ a „„/T]/exp(- 13.4/T) = —,'.

At T =0.1 K, for instance,

4 HH
= ~ ln2 = 0.0693 'K.

Therefore,

kHD e " 'PHD 4, 0.000 144
kHH e ' '4HH 0.0693

This large number confirms the importance of
the destructive process HD" +H~ - HD(n ( 17)
+H~ +heat, even if there is a very small fraction
of D impurity, which thus should be avoided in
the preparation of bulk H~ system.
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