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Transmission yield of fast H2+ through carbon foils has been measured over a wide
r~~e of foil thicknesses for 0.4-1.2-MeV/amu H2+ projectiles. A model is described
which gives an excellent quantitative account of this yield as well as that of the associ-
ated Ho production.

PACS numbers: 34.50.Hc, 34.70.+e, 79.20.Rf

Evidence recently accumulated' ' has demon-
strated that simple atoms and molecules trans-
mitted through thin solids at velocities V&vp,
where v, is the Bohr velocity, can be the incident
species with their original electron(s) as well as
those reconstituted by the process of target elec-
tron capture after the loss of the incident elec-
tron(s). For convenience, we distinguish the two
as the 6 (original) and 6l (reconstituted) trans-
mission regimes, respectively. The 6 regime
may be simply characterized by the survival of
the incident projectile and this has been described
in detail elsewhere. ' ' The S regime may not be
so simply understood except perhaps for the case
of atomic projectiles. Indeed, data on molecular
transmission in the 8 regime have been avail-
able ' for a number of years and, to our knowl-
edge, no quantitative account has previously been
given for the yield of even the simplest case of
H, '. We describe here a quantitative model for
fast H, ' which reproduces remarkably well the
observed transmitted yield of H, ' as well as the
associated yield of H' breakup fragments.

The experimental features of the H, ' transmit-

ted fraction at 0.4, 0.8, and 1.2 MeV/amu through
carbon foils 1-8 ttg/cm' thick are shown in Fig.
1 as a function of dwell time, t~, in the target.
These new data were obtained at University Lyon-
I using a procedure described elsewhere. ' The
6 and 8 features can clearly be seen. There is
the 6 region of t~ ~ 1 fs which is observed to fol-
low exp(- t D/v), with ~ = 0.17 fs, independently of
the projectile velocity V. This translates into an
"electron-loss" cross section o, ~ 1/V which is
a feature expected from binary collisions. ' On
the other hand, there is the other region of to & 1
fs, which exhibits a strong dependence on V.
Such a feature can only be reasonably understood
in terms of a reconstitution process after the
loss of the incident electron, and it is this proc-
ess that is of principal concern here.

To properly focus on the S regime, we sub-
tract out the exponential 8 transmission yield
from the data and display in Fig. 2(b) the S. trans-
mission yield Y(H, ) relative to twice the equilib-
rium neutral fraction 4, for incident H' of the
corresponding velocity. In effect then we have
made use of a previous observation' that the
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FIG. 1. Measured transmitted fraction of H&+ as a
function of dwell time, tD, in carbon foils for incident
H2+. The statistical uncertainty is typically of the
size of the symbol. The relative and absolute uncer-
tainties of tD are estimated to be + 5% and + 10%, re-
spectively. The curves are the results of a least-
squares fitting procedure with use of a linear combina-
tron of two exponentials and merely serve to emphasize
the 6 and S regimes of transmission.

Y(H, ')/24, ratios cluster into a near-universal
curve which is a function only of t~. Some earlier
published data' have also been included in Fig. 2

in order to give a wider tD range for comparison
with the predictions of the model to be described
shortly. These older yield ratios were scaled up-
ward by a factor of 2 in order to match the pres-
ent set which we believe is more accurate. This
is of minor consequence since the yield which we
are attempting to reproduce varies by four or-
ders of magnitude.

A previous measurement' of H' yield with inci-

614

FIG. 2. (a) The effects of multiple scattering char-
acterized by BC, on the interproton separation OB
oriented at an angle 0 relative to the beam direction
OA. give a distribution to the values of the final inter-
proton separation IOC I. (b) Measured yields of trans-
mitted H2+ fraction Y(H2+) through carbon foils in the
g, regime normalized to twice the equilibrium neutral
fraction 4 0 of protons of the corresponding velocities.
The previous set of transmission data (from Ref. 6)
has been scaled up by a factor of 2 and the curves are
the predictions of the model described in the text.
(c) Yields of H from H, breakup in carbon foils in
the S regime transcribed from Ref. 1 with the curves
showing the predictions of the model.

dent H, ' has shown that the yield, per incident
proton, is enhanced over that for incident H' of
the same velocity throughout the range of t~ ex-
amined. The 6-$ features are also apparent in
that case and, we believe, correlated with the H, '
transmission yield. In the 6 regime, the ob-
served exponential decay with increasing t of

0 ~

D

the H yield can be viewed to arise from the dis-
sociation of the incident H, ' (in the lsd ground

g
state). We may thus similarly subtract out the 6
feature and focus on the S regime. The resulting
normalized yields Y(H')/24, are shown in Fig.
2(c).

Our model for the reconstitution process of H'
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and H, ' assumes the following sequence of events:
(i) The incident randomly oriented H, ', charac-

terized as a rigid body with an interproton sepa-
ration R„ is stripped of its electron upon pene-
trating the foil; we tag this time as t =0.

(ii) Inside the foil, the internuclear separation
R of the diproton is altered by the mutual Cou-
lomb repulsion and the effects of energy-loss
straggling and multiple scattering.

(iii) At the exit side of the foil, t =tD, R(tD) de-
termines the probability for the diproton to cap-
ture a target electron, and this can lead either
to a bound H, ' or to separated H'+ H' upon
emergence into the vacuum, depending upon the
final state and the internal kinetic energy ~(tD)
= 2pR of the diproton.

The assumption in (i) that the electron is
stripped at t = 0 is justified by the fact that the
measured lifetime of H, ' in carbon is much
shorter than the tD values considered here. Vi-
brational excitation in the incident H, ' is known
to be present and this can be characterized' by
a distribution D(R,) in R, values. In (iii), the as-
sumption that the capture event occurs at the ex-
it surface is based on the observation' that, in
the corresponding case of atomic projectiles,
the cross section for electron loss, v„ is much
larger than that for electron capture, cr, , and
this implies that only those reconstituted near
the exit surface would be likely to emerge from
the foil. Moreover, these 0, are found' to be con-
sistent with theoretical expectations for capture
into a free-atom electronic state. The latter ob-
servation indeed provided the justification for
our use of free molecular-orbital states (MO) of
H, + as the final states for electron capture by the
diproton.

For a given set of R(tD) and e(tD), we consider
only capture into the Iso and 2po„states' and la-
bel their electronic energies by U (R) and U„(R),
respectively, relative to that of the H'(1s) + H"

separated atoms, which is taken to be zero. A

capture into the repulsive 2pcr„state will always
lead to an H'. In the case of the iso ground
state, an H' will also be produced unless [e+
U&(R)] ( 0, in which case a bound H, ' is formed.
At present there is no satisfactory theory of elec-
tron capture into MO states. We may, however,
expect from a number of observations that the
cross sections for capture into the two MO can
be reasonably expressed as

o, & "(R,V) =[Z, „(R)]'o,"(V),

where cr, refers to that of capture by a proton of

the same velocity leading to an H'(Is) and Z
&

„(R)
characterizes the effective nuclear charge of the
MO. The proportionality to 0," is based on the
fact that the experimental I'(H, ')/24, and Y(H')/

24, ratios are nearly independent of V (see Fig.
2) and that the ground-state o, is nearly the
same" for H' and H, ' at the same velocity. Giv-
en the success of the hydrogenic scaling of 0, in
terms of effective charge in the atomic case,"
it is natural to try to extend this to the present
case of a simple molecule. This then accounts
for the Z „' factor. Indeed an R-dependent effec-
tive charge concept for H, ' arises naturally from
a I CAO description as given, for example, by
McCarroll et al. ,

"and we use their results here
for Z „(R).

Considering only Coulomb repulsion inside the
foil and weighting the results with the D(R,) dis-
tribution gives a reasonable simulation for the
yield of H' but predicts no H, ' reconstitution
products beyond tD= 4 fs, as illustrated by the
dashed curves in Figs. 2(c) and 2(b), respective-
ly. The predicted cutoff for the H, + case is not
difficult to understand. Mutual Coulomb repul-
sion serves always to increase R and e with in-
creasing t~ for a finite value of Rp There will
thus be a f'D beyond which the bound-state condi-
tion [c+Ug(R)]( 0 can no longer be satisfied.
Since the observed H,

' yield shows no discern-
ible discontinuity, we surmise that multiple-scat-
tering effects play a critical role in the longer-
tD region since they introduce distributions in the
R and e values for a given R,. Energy-loss strag-
gling will also induce a spread in the R and e val-
ues, but the effects are estimated to be compara-
tively small.

To minimize computation, we treat the multi-
ple-scattering processes for the two protons in
the cluster as uncorrelated with one another"
and with the Coulomb explosion process. If mul-
tiple-scattering effects on each proton result in
a Gaussian profile of width 0~ in a lateral direc-
tion, the resulting distribution of interproton sep-
arations projected onto the same lateral direction
for a pair initially collinear in a longitudinal
track will also be a Gaussian but with a width cr,
=v 2o~. More generally the distribution of R(t~)
for a given R, may be obtained by considering the
coordinates shown in Fig. 2(a). Coulomb explo-
si.on from an initial R, directed at an angle 8 rel-
ative to the beam direction OA results in the vec-
tor R, =OB. Its lateral component r, =AB is
spread out by multiple-scattering effects s =BC,
giving rise to a distribution in R, =AC and thus
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in R=OC. Since s is randomly oriented in the lateral plane with a distribution

P(s, y)sdsdy =(2w(r, ') 'exp(-s'/2c, ')sdsdy,

the distribution in the magnitude of 8 =9,+s can be written as

Q (R;R„8)dR = (R/v, ') exp[- (R,'+R, ' sin'8)/2v, ']l, (z )dR,

(2)

(3)

where I,(s) is the zeroth-order modified Bessel function, z = (R,R, sin8)/o, ', and R, = (R' R-,'cos'8)"'.
In going to Eq. (3) from Eq. (2), we have first made a transformation from the (s, y) to the (R„g)
space and integrated over g from 0 to 2w. A similar consideration applied to the relative velocity v
=R of the two protons results in a distribution Q(v; v„8)dv identical in form to Eq. (3) but with a cor-
responding multiple-scattering width 0„.

From the above considerations, the probability that a diproton, from a randomly oriented population,
will have a separation R and relative velocity v at foil exit is then

S(R,v; R, v ) = ,' f, —d8sin8Q(R;R„8)Q(v;v„8).

Kith this, the normalized H, ' yield follows as

I'(H, ')/2C, =-,'f "dR,[D(R,)dRgdR, ] f dRZ '(R) f" dvS(R, v;R„v,),

(4)

where v' =[-2U (R)/g]'" (p being the reduced
mass of the diproton) is the largest value of v for
which the bound-state criterion is satisfied.

Numerical evaluation of Eq. (5) for 0.8-MeV/
Rmu projectiles that uses multiple-scattering
widths o, and o deduced from the simplest mul-
tiple-scattering theory" results in the solid curve
shown in Fig. 2(b). The agreement with the H, '
data is remarkable in view of the fact that the da-
ta span four orders of magnitude and no adjust-
ment was made in any parameters of the model.
Use of widths based on a more recent theory"
alters the predicted yields slightly but not the
overall agreement with the data. The clustering
of the data for different V into a near-universal
curve of tl, is also reproduced. For example,
calculated yields for 0.4-MeV/amu H, + are re-
duced only by 40% at tv = 20 fs and less with de-
creasing tD. Such differences are well within the
range of scatter of the data points. The predic-
tions were also found to be relatively insensitive
to reasonable changes in the D(R,) distribution.
For the H' case, multiple-scattering effects are
expected to be unimportant because of their com-
paratively much larger yields and the calculated
results confirmed this expectation.

Finally we mention one additional support for
the model. Our measurements at Argonne Na-
tional Laboratory of the 0' energy distribution of
H+ from the foil breakup of 2-MeV H, ' showed
that the two Coulomb explosion peaks lie closer
together when the H, ' beam is composed of those
H, ' which had survived a previous passage through
a 330-A carbon foil. Our calculations of the H'
energy distribution for this case reproduced the

! data well. The smaller explosion effect is essen-
tially due to the larger R of the reconstituted H, '.
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A new type of time correlation analysis of resonance fluorescence is presented. A
0

strontium atomic beam is excited by a 28-A-off-resonance laser. The photons of the two
sidebands of the fluorescence triplet are shown to be emitted in a well-defined time or-
der. A simple interpretation of this effect is given which implies a quantum jump of the
atom from the lower to the upper state through a multiphoton process.

PACS numbers: 32.80.Kf, 32.50.+d, 42.50.+q

Resonance fluorescence (i.e., scattering of
radiation by free atoms irradiated by a resonant
or quasiresonant laser beam) has been extensive-
ly studied during the last few years. First, it
has been predicted' and observed' that, for two-
level atoms and at high laser intensities, the
fluorescence spectrum consists of three compo-
nents (fluorescence triplet). More recently, the
distribution of time intervals between photoelec-
tric counts recorded on the scattered light has
been measured, giving evidence for an antibunch-
ing of the fluorescence photons originating from
a single atom. '

These two types of experiments emphasize, re-
spectively, the frequency or time features of
resonance fluorescence. One can also consider
the possibility of a mixed analysis dealing with
the time correlations between fluorescence pho-
tons previously selected through frequency fil-
ters~ (the frequency resolution b, v introduces, of
course, an uncertainty At=(b. v) ' in the deter-
mination of the emission time). If, for example,
the three components of the fluorescence triplet
are well separated (their splitting 0 being much
larger than their widths y), one can use filters
centered on any one of these components and hav-
ing a width hv such that y«4v «Q. With such
filters, it is possible to determine which com-
ponents of the triplet the detected photons are
coming from and, simultaneously, to study the

statistics of the emission times with a resolution
Et better than the atomic relaxation time y '.

In this Letter, we report the first experimental
investigation of time correlations between fre-
quency-filtered fluorescence photons. In this ex-
periment, the detuning 6 = ~~ —~, between the
laser and atomic frequencies ~~ and ~0 is much
larger than the Rabi nutation frequency ~, (off-
resonance excitation) so that the splitting Q=(&u, '
+ 52)'~' is simply equal to the detuning 5. The
three components of the triplet are therefore
located at e~ for the central component (Rayleigh
scattering) and &u„= &v~+0 =2~~ —e, and vs= e~
—0 =~, for the two sidebands. The experiment
hereafter described shows that the photons of
these two sidebands, selected by two filters cen-
tered at ~„and ~» are correlated and emitted
in a well-defined order (cv„before &us).

We use a strontium atomic beam ('S, -'&, reso-
nance line; A.,= 460.7 nm) irradiated by the 28-A-
off-resonance blue line of an argon-ion laser (A.~
= 457.9 nm). The multimode-laser light (1 W
power) is focused onto the atomic beam (laser-
beam waist less than 10 pm) and focused back by
a spherical mirror in order to double the laser
intensity in the interaction region. In these con-
ditions, the Rabi nutation frequency u, is much
smaller than the detuning 5 (cu, /2n = 80 GHz and
5/2n = 4000 GHz) and the central line of the fluo-
rescence triplet is about 10' (i.e., 45'/a, ') times
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