PHYSICAL REVIEW **LETTERS**

VOLUME 45 $25 \text{ AUGUST } 1980$ NUMBER 8

Half-Life of 32Si from Tandem-Accelerator Mass Spectrometry

D. Elmore, N. Anantaraman, $^{(a)}$ H. W. Fulbright, H. E. Gove, and H. S. Hans^(b) Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627

and

K. Nishiizumi and M. T. Murrell Department of Chemistry, University of California at San Diego, La Jolla, California 92093

and

M. Honda

Institute for Solid State Physics, University of Tokyo, Tokyo 106, Japan (Received 12 May 1980)

In one of the first applications of the new accelerator mass-spectrometry technique to nuclear physics problems, the half-life of ³²Si has been determined to be 108 ± 18 yr. This result, which disagrees with the accepted value of 330 ± 40 yr, has special significance because of the use of 32 Si for dating studies.

PACS numbers: 23.40.-s, 07.75.+h, 27.30.+t

Cosmic-ray-produced radionuclides are useful dating tools in such research areas as hydrology, archaeology, geophysics, oceanography, and cosmochemistry. One of these radionuclides, ^{32}Si , is produced in the atmosphere by cosmic-ray spallation of argon and has been studied in groundspariation of argon and has been studied in grout-
water,¹ polar ice cores,² and ocean water.³ For studies of nuclear-waste disposal sites, this relatively short-lived isotope, together with ¹⁴C ($t_{1/2}$) = 5730 yr) and ${}^{36}Cl$ ($t_{1/2}$ = 308 000 yr), can provide important information on the mixing of ground-Important information on the mixing of ground-
waters.⁴ In meteorites ³²Si is produced mainly by spallation of iron; in the meteorite Aroos a very low activity was measured.⁵ Uncertainties in the half-life have undoubtedly deterred many similar studies.

The determination of the ^{32}Si half-life has been a difficult problem in nuclear physics. The currently accepted⁶ value of $t_{1/2} = 330 \pm 40$ yr is based on the measurement' of the specific activity of 32 Si as a function of depth in ice cores and assumes a nearly constant cosmic-ray flux. A more reliable method of determining long halflives is to use the relation $dN/dt = -\lambda N$, which requires measurements of the decay rate and the number of decaying atoms. The 32 Si decay goes entirely by the β -emission chain ³²Si(g.s.) \rightarrow ³²P(g.s.) \rightarrow ³²S(g.s.) for which the rates can be measured by conventional methods. The chief difficulty has been in determining the number of 32 Si nuclei, N, in the sample. When enough of a radioisotope is available, the number of atoms can usually be determined by mass spectrometry. The problem with mass spectrometry of $32Si$ lies in producing a sample with enough ^{32}Si to overcome the interference from molecular ions having the same M/q . Except for the polar-ice
study, previous half-life determinations⁷⁻¹⁰ study, previous half-life determinations⁷⁻¹⁰ de-

pend on assumptions about nuclear-reaction-production cross sections to estimate the number of 32 Si atoms. The values obtained for the 32 Si halflife range from 250 to 710 yr.

In the present Letter, we report a new determination of the half-life of ^{32}Si employing the differential relation mentioned above. The novel feature of this work has been the measurement of the ratio of the number of ^{32}Si atoms to the total number of silicon atoms in the sample by the newly developed mass-spectrometry technique using a tandem Van de Graaff accelerator together with a special beam-transport system and heavy-ion detector. The apparatus and techniques are similar to those used for 36 Cl detec $tion¹¹ except that here an absolute isotope ratio$ is required. Experience with the detection of ¹⁴C, ³⁶Cl, and ¹²⁹I has shown¹²⁻¹⁴ that absolute ratios can be determined to about 10%. A sensitivtios can be determined to about 10%. A sensitiv-
ity below 10⁻¹⁵ has been obtained for ¹⁴C and ³⁶Cl, and in favorable cases isotope ratios relative to a standard have been measured to 1% . standard have been measured to 1% .
A sample with ${}^{32}Si/Si \approx 10^{-10}$ was produced by

spallation of Cl with 7 mCi of 52-MeV proton
followed by addition of Si carrier.¹⁵ After dis followed by addition of Si carrier. After dissolution in NaOH, $SiO_2 \cdot nH_2O$ was precipitated with HCl then washed in 6N HCl and H,O repeatedly. The purified $SiO_2 \cdot nH_2O$ was ignited, yielding 17.² mg of SiO,.

The mass spectrometry was carried out with the University of Rochester MP tandem accelerator. A 100-nA beam of ${}^{28}Si$ was produced from the enriched sample in the HICONEX Cs sputter ion source¹⁶ and momentum analyzed with a 30° inflection magnet. An Ar-gas stripper was used in the terminal and a generating voltmeter was used to stabilize the voltage to \pm 5 kV. After acceleration, combined 90° and 45° magnetic and 10' electrostatic analyzers selected the appropriate charge-to-mass ratio.

With the inflection magnet set to mass 32, the ions injected into the accelerator consisted mainly of O_2 ⁻, ${}^{32}S$ ⁻, and ${}^{32}Si$ ⁻. Molecules were eliminated by selecting charge-state-5 ions from the 9.2-MV terminal and relying on the fact that multiply charged molecules break up rapidly. The major problem remaining was to separate ${}^{32}S$ from ^{32}Si . This separation was made with use of the atomic-number (Z) dependence of the range and stopping power in a gas-filled heavy-ion detector. Aided by the fact that S and Si differ in Z by two units, good separation was obtained with use of five energy-loss measurements and one total-energy measurement. However, trace

amounts of 32 S originating in the ion source¹⁷ resulted in the overwhelming counting rate of $10⁷$ counts/sec. When attempts to reduce this failed, three \sim 10% transmission Ni mesh attenuators were inserted in the beam line. The resulting 10^{4} ³²S/sec counting rate allowed a 60-counts/sec pulser, running during data acquisition, to be used to estimate the dead time $(10-15\%)$ to an uncertainty of about 8%. The attenuation factor, measured with 32 S ions, was 1440 ± 70 . The 32 Si counting rate was, of course, reduced by this same factor but the resulting rate of 1 count/min proved adequate.

The isotope ratios ${}^{30}\text{Si}/{}^{28}\text{Si}$ and ${}^{32}\text{Si}/{}^{28}\text{Si}$ were measured by changing three magnetic elements (inflection magnet, high-energy quadrupole, and analyzing magnet) to select alternately the stable isotopes 28,30 Si and reading their current (attenuators out) in the image Faraday cup following the analyzing magnet, and then by selecting 32 Si and measuring its counting rate (attenuators in) in the heavy-ion detector. The two stable isotope ratios 29 Si/ 28 Si and 30 Si/ 28 Si were measured in a separate series of cycles as an additional check on the mass dependence. The cycling period was kept relatively short (10-15 min) to correct for fluctuations in source output, and the sequencing was automated for consistency. A simpler procedure would have been to cycle the terminal voltage rather than the magnets; however, unpredictable changes in accelerator transmission might make an extrapolation to mass 32 unreliable. The transmission from the image cup to the 2 cm opening of the detector was determined to be (100 $\pm 2\%$ and was flat topped over a ± 20 -kV change in terminal voltage. The digital current integrator used¹⁸ had an accuracy specification of 0.3% at 50 nA and comparison with a second unit was made as a check.

The spectrum (Fig. 1) shows that the $32Si$ events were well separated from the ³²S events even at the 10⁴/sec counting rate. Separation between 32 S and 32 Si in the first four ΔE spectra, although not as good as that shown for ΔE_{5} , provided additional discrimination; digital gates were placed on all six signals in the computer. A $SiO₂$ chemistry blank gave no 32 Si counts in 20 min. Here istry blank gave no ³²Si counts in 20 min. Here
one count would have resulted in ${}^{32}\text{Si}/\text{Si}$ = 7× 10⁻¹² although the ratio is expected to be much lower than this. An upper limit of 0.02 count/min was set for background from the ^{32}S tail. The mean $^{32}Si/^{28}Si$ ratio for twenty cycles was 9.1 ± 0.8 $\frac{\text{(counts/min)}\mu\text{A}}{\mu}$. The error quoted is the standard deviation of the mean and reflects both sta-

FIG. 1. Two-parameter linear spectrum for a onehour run on the 32 SiO₂ sample. Here E is the total energy deposited in the detector, and ΔE_5 is the energy deposited under the final ΔE electrode and is thus essentially a range measurement. Most of the ${}^{32}S$ peak and lower- ΔE_5 events have been removed with a hardware gate. The 32 S pileup represents only a few percent of the total 32 S events.

tistics and uncertainties due to fluctuations in source output and transmission.

Two corrections must be made to this ratio.
he larger one is due to mass fractionation, 19 The larger one is due to mass fractionation,¹⁹ which occurs in the ion source from the sputtering process, in the beam transport system from stray magnetic fields not changed in the cycling procedure, and in the stripper canal from the velocity dependence of the charge-state yield. Although the functional dependence on the mass is unknown, a linear extrapolation over the 13% spread from mass 28 to mass 32 seems reasonable. The measured $^{29}Si/^{28}Si$ and $^{30}Si/^{28}Si$ ratios were factors of 1.04 ± 0.02 and 1.03 ± 0.02 above those expected assuming natural abundance ratios. This extrapolates to 1.08 ± 0.10 at mass 32; the increased error reflects the uncertainty in the functional dependence.

The second correction takes into account any additional Si⁻ beam that originates in the pure aluminum sample holder and elsewhere in the ion source. A comparison of the image-cup currents for an empty sample holder and one with $SiO₂$ resuited in a correction factor of 1.03 ± 0.03 that increases the measured ${}^{32}Si/{}^{28}Si$ ratio. The corrected 32Si/Si atom ratio becomes (1.53 ± 0.23) \times 10⁻¹⁰.

The activity was determined by counting the daughter ${}^{32}P$ ($t_{1/2}$ = 14.28 d) because of its higherenergy β ray. The β counter was a gas-flow-type Geiger-Mueller counter with 2π geometry operated in anticoincidence with a multiwire Geiger-Mueller counter. The growth activity of ${}^{32}P$ in the $SiO₂$ was measured over a period of six halflives. A $25.71 - mg/cm^2$ Al absorber was used to separate β rays from ^{32}P (E_{max} = 1.71 MeV) and separate β rays from ^{32}P (E_{max} = 1.71 MeV) 32 Si ($E_{\text{max}} = 0.21$ MeV). The counting efficiency was determined with $40K$ using the same geometry as used for the $SiO₂$ sample. The $SiO₂$ sample was mixed with NaCl to help match the self-absorption of the KCl standard. By counting different-sized samples, the difference in self-absorption of $40K$ in KCl and $32P$ in NaCl was found to be a few percent, consistent with semiempirical equations. The β activity used for ⁴⁰K (E_{max} = 1.33 MeV) was based on an isotopic abundance of 0.0117%, a half-life of 1.278×10⁹ yr, and a β branching ratio of 0.8933. The overall counting efficiency for ${}^{32}P$ in the sample was found to be $(39_{\pm} 3)\%$ after the absorption corrections and the background level was 0.6 count/min. From the equilibrated ^{32}P activity and the SiO₂ mass, the 32 Si specific activity was determined to be 40 ± 3 $\frac{\text{dis}}{\text{min}}/ \text{mg}$ Si.

This specific activity together with the measured ${}^{32}Si/Si$ ratio gives a half-life of 108 ± 18 yr. We have attempted to estimate random and systematic errors as standard deviations; it is therefore appropriate²⁰ to combine the relative errors quadratically to obtain the overall 17% uncertainty.

The present tandem-accelerator mass-spectrometry technique, that has improved the sensitivity by several orders of magnitude for longer-lived radioisotopes, may not be as helpful for future analysis of 32 Si in natural samples. Terrestrial water samples are diluted by the abundant stable Si isotopes giving very low ${}^{32}Si/Si$ ratios. This is not a problem for activity measurements, however, since the daughter ^{32}P can be milked from large samples and measured efficiently. For example, a 1-kg Si sample could be counted at 1 dis/h but would have a $^{32}Si/Si$ ratio of only 6×10^{-20} . Even a 1-mg, 1-dis/h sample that may be of interest in meteorite studies is presently out of the range of the accelerator technique with ${}^{32}Si/Si = 6 \times 10^{-14}$.

With use of the new half-life for 32 Si, earlie:
"periments"^{- 10} based on assumed nuclear-pre $\tt{experiments}^{7-10}$ based on assumed nuclear-pro duction rates can be viewed as cross-section measurements, and the polar-ice study² can be viewed as a cosmic-ray-flux measurement. Knowledge of a more reliable half-life should stimulate more studies like these as well as studies of ³²Si in groundwater and meteorites. The lower half-life gives ³²Si special importance in meteorites since it now falls between 44 Ti ($t_{1/2}$) =47 yr) and ${}^{39}\text{Ar}$ ($t_{1/2}$ =269 yr). For these three isotopes target effects largely cancel since all are produced by iron spallation; therefore their ratios could provide important information on the galactic cosmic-ray flux over the last few hundred years.

We thank K. Sakamoto for providing the ^{32}Si sample and R. P. Beukens and the rest of our colleagues at the University of Toronto for useful discussions. This work was supported by the National Aeronautics and Space Administration under Grant No. NGL 05-009-148 and the National Science Foundation under Grant Nos. PHY-77- 27943 and PHY-78-22698.

 Present address: Cyclotron. Laboratory, Michigan State University, East Lansing, Michigan 48824.

(b) On leave from Panjab University, Chandigarh, India. ¹D. Lal, V. N. Nijampurkar, and S. Rama, in Pro ceedings of the Third Symposium on Isotope Hydrology,

Vienna, 1970 (International Atomic Energy Agency,

Vienna, 1970), pp. 847-868.

 2 H. B. Clausen, J. Glaciol. 12, 411 (1973).

 ${}^{3}D.$ Lal et al., Limnol. Oceanogr. 21, 285 (1976).

 4 S. K. Gupta and D. Lal, in Report on Workshop on

Dating of Old Groundwater, edited by S. N. Davis (Univ. Arizona Press, Tucson, 1978).

⁵M. Honda and J. R. Arnold, Geochim. Cosmochim.

Acta 23, 219 (1961).

 ${}^{6}P$. M. Endt and C. Van der Leun, Nucl. Phys. A310, 330 (1978).

 7 M. Lindner, Phys. Rev. 91, 642 (1953).

 8 A. Turkevich and A. Samuels, Phys. Rev. 94, 364 (1954).

 $\rm ^9V.$ D. Geithoff, Radiochim. Acta 1, 3 (1962).

 10 M. Honda and D. Lal, Nucl. Phys. 51, 363 (1964).

 11 D. Elmore *et al.*, Nature (London) 277, 22, 246

(1979).

 12 L. Kilius, private communication.

 13 K. Nishiizumi et al., Earth Planet. Sci. Lett. 45, 285 (1979).

 $^{14}{\rm D.}$ Elmore et $al. ,$ to be published

 $15K$. Sakamoto, K. Kaga, and K. Komura, J. Inorg. Nucl. Chem. 40, 1183 (1978).

¹⁶General Ionex Corporation, Newburyport, Massachusetts 01950.

 17 Tests with ultrapure Si and AgCl samples, as well as our ${}^{32}SiO_2$ sample, mounted in a well-cleaned pure Al support, show a base sulfur level of \sim 10 ppm after correction for negative Si, Cl-, and S-ion production. To lower this level, a new ion source would be required.

¹⁸Ortec model 439.

 19 W. A. Russell, D. A. Papanastassiou, and T. A. Tombrello, Geochim. Cosmochim. Acta 42, 1075 (1978).

 20 J. W. Müller, Nucl. Instrum. Methods 163, 241 (1979).

Measurement of the ³²Si Half-Life via Accelerator Mass Spectrometry

W. Kutschera, W. Henning, M. Paul,^(a) R. K. Smither, E. J. Stephenson,^(b) and J. L. Yntema Argonne National Laboratory, Argonne, Illinois 60439

and

D. E. Alburger, J. B. Cumming, and G. Harbottle Brookhaven National Laboratory, Upton, New York 11973 (Received 19 May 1980)

The half-life of ³²Si has been measured to be $T_{1/2} = 101 \pm 18$ yr, considerably shorter than the previously accepted value of ≈ 300 yr. The new value was obtained by measuring the specific β activity with a liquid-scintillation-counter technique and the $32\$ Si concentration with tandem-accelerator mass spectrometry. It is expected that the present result will have a strong impact on studies with cosmogenic 32 Si.

PACS numbers: 23.40.-s, 07.75.+h, 27.30.+t

Cosmic-ray-produced 32 Si was detected¹ in terrestrial materials twenty years ago; however, its use for dating studies is still hampered by a

poor knowledge of the half-life. The best existing values are those obtained by the indirect method of depth distribution measurements of $32Si$ ac-