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Self-Consistent Model of Stochastic Magnetic Fields
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In this Letter, a model is described in which spatially stochastic magnetic field and cur-
rent fluctuations in a plasma with sheared average magnetic field are treated consistently
with Ampere's Law.

PACS numbers: 52.30.+r, 41.70.+t, 52.35.Bj

B VJ=O

V~ /=4' J,
8(/Bt+v~ ~ Vg =q J-By/Bz.

(1a)

(lb)

(1c)

Equation (la) states that the z component of the
current, J, is constant along the field lines %.
If we note that g is a flux function such that B
=B,z+z»g, (lb) is recognized as Ampere's
Law (i denotes quantities perpendicular to 2). If
the resistivity, q, is zero, (1c) states that the
flux, g, is frozen into the plasma fluid of flow
velocity v~=BD V'y &&2. With E =V'y as the elec-

Recently, a number of calculations have been
published which deal with the problem of stochas-
tic magnetic field lines in a plasma with magnetic
shear. In the simplest version of the problem,
the field is constant in time but the lines diffuse
inx andy as one moves in the z direction. For
the most part, recent work has concentrated on
the "stochastic acceleration" problem in which
the statistical properties of the field line trajec-
tories are determined, given the perturbed field
or current density. The problem of the corre-
lated diffusion of two field lines has also been in-
vestigated. "However, there has not been pub-
lished a calculation in which the field stochastic-
ity, including two-line correlation, is made con-
sistent with an average z-independent current
profile and Ampere's Law. In this Letter, we
present such a calculation. We describe a self-
consistent case of finite-P drift waves, but only
a single-line calculation is done. ' In order to il-
lustrate our procedure, we consider a concrete
example —nonlinear tearing modes. To keep the
example as simple as possible, we have used a
rather idealized model of tearing-mode turbu-
lence. However, we believe the concepts and
techniques are useful in a much broader context.

Rutherford has argued that when the width of
the magnetic island exceeds the tearing-layer
width, the tenez ing mode enters a nonlinear phase
described (in a sheet pinch) by

8 x 8 8 8—+ ——J+b J = b —(J)„. -
~z L ~y x ~x (2)

Here, 8(J),„/Bx is the average-current gradient,
and b =B„/Bo. We have put B,=+ xBQL, where
L is the shear length. Also, since the nonlinear
term BBJ/&y is unimportant in (2), we have re-
tained only the x component of the magnetic field
perturbation.

A solution to (2) may be obtained by noting that
its characteristic equations determine the trajec-
tory of a magnetic field line. Using z to parame-
trize progression along a field line, the turbulent
line trajectories are given by dx/dz =b and dy/dz
=[x+bx(z)]/L, where bx(z) = f, dz' dx(z')/dz'. We

tric field, Eq. (1c) follows from Ohm's law and
Faraday's law. White et al.' have also consi-
dered a model based on Eq. (1).

We decompose the total current fluctuation 6J
into two constituents, 8' and J. J„,~,, ' is the
coherent current fluctuation produced in response
to a magnetic perturbation of wave numbers k,
and k» and which has the same phase as that per-
turbation. J. ..' is calculated using a renor-
malized version of (la). J denotes the incoherent
current fluctuations due to the highly nonlinear
rearrangement of the average-current profile
(J)„at the k 8 =0 resonance. ' Phenomena which
could be interpreted in terms of this rearrange-
ment process have been observed in computation-
al studies of the nonlinear evolution of the tearing
mode.

Because J is a very complicated function, the
theory deals only with the correlation function
(J(l)J(2)) (1 means x~, y»z, ) which we compute
in the "stochastic acceleration" approximation
using (la). Next we use (1b) to require that the
current J ' and J are consistent with the mag-
netic fields assumed in their calculation. This
procedure is analogous to that of the clump theory
of Vlasov phase-space density fluctuations. '

To determine the coherent current response,
note that (in a sheet pinch) (1a) may be written as
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integrate along field line trajectories from z'
= —~ to z. We assume the field lines diffuse in
x as one moves in the positive z direction. This
ensures the convergence of the trajectory inte-
gral and permits us to neglect the contribution

from J '(- ~). As will become evident later, if
the turbulence is homogeneous in z, we wouM ob-
tain the same final answer by integrating from
+ ~ to z. If we carry out the trajectory integrals,
Fourier transform the y and z dependence, and
make a cumulant' expansion, we obtain

J„...' =f dzexp zz k, — ' — '., ([f dz' 6x(z')]'),„ f„, „, (3)

Finally, noting that (6x') „=2Dz, where D is the turbulent magnetic diffusion coefficient (in the x direc-
tion) defined below, the renormalized coherent current response is

J.. .,"= ~(k. k, x/-L)b, , „,B(J),QBx,

where

(4)

R(s) = f, dz exp(isz —k,
' Dz'/ 3L'), (~)

D = f(dk, /2m) f(d k. /2m)(b')», », R(k, -k, x/L). (6)

Here, (k )»», is the Fourier transform (in yi -y, . and z, —z») of the correlation function, (b(1)b(2)),
for the magnetic field perturbation. ' The k B =0 singularity when D =0 in (4) is characteristic of the
outside solution for the tearing mode, and is removed here by the field-line diffusion coefficient.

z, = (k,'D/3L') "' is the basic single-line z randomization length in the theory. '" A field line and a
magnetic perturbation are in resonance when ik, —k„x/Li (z, '. Therefore, the resonance width in x
is given by hx, = (LD/3k, )'i'. Writing ~x, in terms of the resonant portion of the spectrum only ((b')„,)
and setting R -z„we find D -(5 )„,z, . If we use this expression for D, it is easily verified that M,- [(b')„,L'/k, ']"' an expre—ssion identical with the width of the separatrix of a single magnetic island. "
bx, can be used to ascertain the amplitude necessary for island overlap, "and, therefore, the onset of
turbulence.

The coherent current response given by (4) can be substituted into Ampere's Law (1b) to obtain an
equa. tion for $:

(B'/Bx +k )g»» (x)+[4wk Bo (B(J)»~/Bx)/(k, —k~x/L+izt ')]p»» (x) =4'»» (x), (7)

where R (k, —k, x/L) has been approximated by i(k, —k, x/L +iz, ') '. In the limit of z, - ~ and J= 0, (7)
is recognizable as the outside equation of the linear tearing-mode theory. '

In order to solve (7) for Jg 0, it is useful to define a Green's function G(x, x )»» which satisfies (7)
with the right-hand side set equal to 5(x -x ), and with the same boundary conditions. It turns out that
we will only need the Green's function evaluated at x =x' =x, where x, =k, L/k, is the location of the
resonant surface. G(x, x')»» has a simple form when z, '-0', and can be obtained by integrating (7)
from x = —~ to x =+~ and using the Plemelj formulas. We get

G(x =x, , x' =x,)„„=[a'„„+z4mLk (B&J).,/Bx)/~. lk, l] '
(8)

is the usual tearing-mode stability parameter equal to the discontinuity in the logarithmic deriva-
tive of the real part of the homogeneous solution to (7), i.e. , with the right-hand side set equal to zero.
The imaginary part in braces in (8) comes from the discontinuity in the logarithmic derivative of the
imaginary part of the solution (for z, '-0'). This can be seen by noting that near the singularity the
homogeneous solution of (7) has the form g(x) = g(ur, )(zv -w, ) in(M -m, )+regular function, where m

=4vLB, 'xB(J)„/Bx.
A bivariate diffusion equation for the fluctuation correlation function (BJ(1)M(2)) can be obtained by

the procedures used in Ref. 6. We define the variables x, =x,+x, and y, =y, +y, . (5J(1)5J(2)) is strong-
ly peaked for small x and y, and satisfies

—+= — D (6J(I)BJ(2))= 2D —(J)„8 X 8 8 8 8

~Z I ~g ~X X ~X
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where

D =2f (dk, /2m) f (dk, /2w)[l —cos(k, y )](k'), „R(k, —k, x/L). (10)

Here, D describes the correlated diffusion of two field lines. D vanishes for small x,y separation
(field lines diffuse together), and becomes the sum of the uncorrelated diffusion coefficients when the
separation becomes large (field lines diffuse independently). Eq. (9) has an approximate solution of
the form

(6 J(l)6J(2)) = 2z, (x,y )D (B(J) „/Bx)',

where z, (x,y ) is the two-line correlation length. " If we approximate

D k 2y 2D

where k„ the average k, wave number, is

k,'=(2D)-'[B'D /By ']„
we can solve the moment equations of (9) for z»z, to give (y (z)) —= (y '+2x y z,/L+2x 'z, '/L')
x exp(z/z, ), so that

z, (x,y )=z, in[3k, '/(y ' —2y x z,/L+2x 'z, '/L')),

(12)

(14)

where z, = (4ko'D/L )"'. Setting k, =k, in the definition of z„we find that z, = (12) "'z, .
The quantity (6J(1)6J(2)) is the total fluctuation correlation function. Since 6J =J~'~+J, where J '~

are uncorrelated at this stage of the calculation, the incoherent correlation function can be calculated
by subtracting the coherent correlation function from (6J(l)6J(2)). The coherent correlation function is
obtained by multiplying J '~(1) by J '~(2). It follows that, for 1-2, (J '~(l)J~'~(2))-zg(B(J)„/Bx)'. After
subtracting this from (11), we obtain

(J (1)J(2))- 2z g (B(J),„/Bx)' in[3k, 'c /(y
' —2y x z,/L + 2x 'z, '/L') ], (15)

where Inc' = (12)"'. Equation (15) states that the stochastic field lines in the presence of B(J)„/Bx
create current filaments of scale L/k, z, -hx, in x, k, ' in y, and z, in z. In (15) each fluctuation is
evaluated at the same value of z (i.e. , z, =z,). However, the z =z, -z, dependence is easily incorpo-
rated by noting that the current fluctuation approximately follows the unperturbed field lines. Thus the
z dependence can be included in (15) by replacing y with y —(x,/2L)z . After this is done, (15) is
Fourier transformed in y and z (denoted by ()» ). Since (15) is a sharply peaked function in x of
width 4x„we approximate the x dependence with a delta function. Finally we obtain

(J (1)J(2))„„=[2L(2m)'/k,'][I-J',(1.4k, /k, )]D(B(J)„/Bx)'6(x )6(k, k, x/L), — (16)

where J, is a Bessel function. We can now use (7) and the Green's function to express the perturbed
flux (6g) correlation function in terms of the current correlation function

«q'(x. )'&». = [(4~)'L'/21k,
I ll G (x.,x,).. .,I'D(x, ) (B(J)„/Bx)'[I -J,(1.4k, /k, )]. (17)

The fact that (17) contains G evaluated at x =x' =x, results from the 6 functions in (16). Actually, these
5 functions should be resonance functions of finite width b,x,. We have neglected this, since in the
"constant-( approximation", ' G is approximately constant over this distance. Equation (17) contains D
and k,' which are determined by (6) and (13). Since M, = —B6$/By, we use (17) in (6), and (10) and (17)
in (13) to produce two equations that determine D and k,':

RV
'

V G x 2 (18)

where k,„=k„x,/L and G is an implicit furic. ion of D. Unfortunately, the integral in (18) for k, diverg-
es logarithmically, since for large k„~G~'- ~h') ' and 6'-k, . This divergence in the k,' equation oc-
curs because D increases more rapidly for small y than is a.ssumed in (12). The proper procedure
would be to solve for the y dependence of D (y ) as in Ref. 13, but this is too complicated for our pur-
poses here. Instead we ignore the k,' equation in (18) and use Eq. (8), the D =0 value of the Green's
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function, in (18) to determine k,. A numerical
solution of (18) for k,' then gives kQ- 6.

The behavior of the average current (J) in the
presence of the self-consistent, stochastic fields
can be determined by ensemble averaging (la)
and neglecting the B,BJ/By nonlinearity. The re-
sult is B(J)„/Bz =- B(bJ)„/Bx. This can be eval-
uated from the correlation functions following the
procedure of Ref. 6. A I enard-Balescu-like
equation for the evolution of (J)„results, and
has the form B(J),„/Bg = (B/Bx)DB(J) „/Bx —(B/
Bx)F(J)„. Here, D [given by (6)] and F are mag-
netic field line diffusion and "drag" coefficients,
respectively. Just as in the one-dimensional the-
ory of plasma turbulence, ' it can be shown that
the diffusion and drag terms cancel exactly (at
least for low turbulence levels), leaving B(J)„/
8z = 0. This important result ensures that the
average current density and magnetic field will
be z independent.

The time dependence of the fluctuation spectrum
can be obtained by multiplying (1c) by g and en-
semble averaging. This yields B(((1)g(2))/Bt
=q[(g(1)J(')(2)) +(P(1)J(2))]. It is straightforward
to show that the resulting time dependence is ex-
ponential but with a small growth rate of order of
the inverse macroscopic resistive time L'g '.

In conclusion we believe that the methods and
concepts presented here may be of use in a vari-
ety of stochastic magnetic field problems.
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