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The first four coefficients in the effective potential Vesf(9g) =Zp=q Vo, 952" are calculated
for a mass— and wave-function~renormalized g§04 field theory in d space-time dimensions
in the limit where the unrenormalized coupling g = *° with the renormalized mass M held
fixed. The accuracy of these numerical results is verified by exact analytical calcula-
tions of the effective potential performed in 0 and 1 space-time dimensions.
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In the previous papers'~® we have formulated a for the vacuum persistence function Z:

simple procedure for expanding the Green’s func- _ a

tions of a gp* theory in d-dimensional space-time 219 -f ¢ exp{~ f dxL+I0)e (] ()

in inverse powers of the bare coupling constant We obtain W, from Z[J]| by

g. In this paper we indicate how such expansions 5

can be mass and wave-function renormalized, WalXgyeosxn) = 570 - ( 1nZ[J] 7= (2)

and report the results of extensive calculations 1

of the renormalized n-point Green’s functions. The Green's functions are renormalijzed in three
The Lagrangian density describing the g<p4 the- steps: First, the wave-function renormalization

ory 1n Euclidean space is £ =1(3 ¢)? + $ m2¢p? constant Z, is computed from the two-point Green’s
+% gp*, where m is the bare-mass parameter. function by Z, ! =[dW, *(p?)/dp?),2-,. Second,

To calculate the connected n-point Green’s func- the renormalized mass M is defined by M?

tions W,(x,,...,x,) one introduces a source func- =Z4[ Wy H(p?)]p2=0 Third, the renormalized n-

tion J(x) in the functional-integral representation point Green’s functions are obtained by multiply-
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ing W, by Z,"/2 and eliminating m in favor of M.
This procedure, in which M and Z, and defined
at p>=0, is an intermediate renormalization
scheme.

An important quantity to calculate in this 'cheory|

Vo=M?/2, V,=G/24==Z2(W," )W /Al|,-q, V=
V== ZH W, YW, — 56W W, W, 1 +280W (W, 1)2/8 !, o,

is the renormalized effective potential V,¢;(¢g)

= :=1V2n§0R2n7 where ¢R=Z3-1/z(pclassical' Since
Vis is the generating function of the one-particle-
irreducible renormalized Green’s functions at
zero external momentum on all legs, the coeffi-
cients V,, can be expressed as follows:

- Zsa(I’Vz-l)s[We - 10W42W2-1] /6! Ip =09
(3

and so on. Of particular interest to us is G, the renormalized coupling constant, and G =GM*™%, the
dimensionless renormalized coupling constant. Because we are primarily concerned here with d <4,
we do not perform a coupling-constant renormalization of the higher Green’s functions.

To obtain numerical values for the dimensionless quantities R,, =V2,,/M
tional-integral representation for Z[J] on a lattice in powers of g™

2n-nd+d

, we expand the func-
This procedure begins by formally

eliminating the kinetic energy term from the functional integral by means of a functional differential

operator:

Z[J] =exp dedxd"y % g—;(;) Go™(x,9) g{%ﬂ Jog exp[~ [a'x(Gm?e® + §g0*+I9)],

where G, (x,y) =825(x —y). The remaining func-
tional integral in (4) is evaluated explicitly by ex-
pressing it as a product of ordinary integrals,
one for each lattice point; each such integral has
the form [ _dx exp[— a’(% gx*+ $m3®+Jx)], where
a is the lattice spacing.

We asymptotically expand this integral for large
g, using two distinct procedures. The first meth-
od begins by holding » fixed. The second method
is more refined and gives better results. It as-
sumes that in the limit of large g, with M fixed,
m? becomes large and negative in the continuum
theory. One way to incorporate this behavior is
to substitute m?=-gu?"2, where u is regarded
as a fixed mass. (There are, of course, many
other substitutions which allow m? to be large and
negative.) In either method, asymptotically ex-
panding the integral for large g, with m fixed in
the first case or with u fixed in the second case,
defines a set of 2x-point vertices to be used in
the diagrammatic expansion of the Green’s func-
tions. We have calculated W,, W,, Wy, and W,
up to diagrams having four, five, six, and seven
internal lines, respectively, using the vertices
obtained by both methods. The resulting calcula-
tion gives the Green’s functions as double power
series in the small dimensionless parameters €
=(ga*"%) 12, s =m2%?® (method 1) and # =(ua)"2,
x=a"*u*?% g (method 2). The dependence upon
the space-time dimension parameter d is very
simple; the value of a diagram having % internal
lines depends on d as a kth-degree polynomial.
The details of these diagrammatic expansions
will be given elsewhere.
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(4)

| The renormalization of the n-point Green’s
functions was carried out by solving for m (or u)
in terms of M. Since M was calculated in the
form of a series in powers of the two small pa-
rameters (e,s) or (¢, x), the resulting expression
for M is itself a series in powers of these small
parameters. Upon eliminating » (or p) in the
series for the Green’s functions, the parameter
s in method 1 gets replaced by S =M 2:2 and the
parameter ¢ in method 2 gets replaced by 7=1/
M?%a®. Here we are interested in the limits a—0,
g -, with M fixed, and so we set S and x to
zero.? Thus, the remaining parameters are €
(method 1) and 7 (method 2), and the truncated
series in powers of these parameters must be
extrapolated to infinite values of € and 7.

The procedure we use to extrapolate to the con-
tinuum limit (€— e, 7~ ») has been extensively de-
scribed and investigated.?’® Typically, the pro-
cedure yields a sequence of extrapolants, one for
each order of perturbation theory (in powers of
€ or T in this case) which appear to converge
rapidly to limits. These limits are presumably
the correct answers for the continuum theory. In
Table I five extrapolants to G for several values
of d are given. Observe that the extrapolants to
G from method 2 are far more rapidly convergent
than those obtained from method 1. On the basis
of Table I we select method 2 as the superior
method; all further numerical results reported
here are derived using method 2.

There are a number of techniques which can be
used to extrapolate to 7 =«, One such technique,
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TABLE I. Five extrapolants to G from method 1 and method 2. Observe that
the extrapolants from method 2 converge more rapidly as might be expected be-
cause method 2 incorporates the fact that m? is large and negative for large g.
The inadequacy of method 1 is particularly apparent in three dimensions because
it predicts complex values for &. The exact result for G when d=1 is 6 [ see

(M.

Number of
internal d=1 d=2 d=3
lines Method 1 Method 2 Method 1 Method 2 Method 1 Method 2
2 4.086 5.657 12.381 16.000 62.526 45.2565
3 4.526 5.826 10.555 14.966 complex 31.811
4 4.970 5.895 12.580 14.930 30.498 30.984
5 5.178 5.931 14.283 14.986 complex 30.149
6 5.3b4 5.952 15.703 14.945 49.012 28.426

which leads to the results in Table I, is to extrap-
olate the series in powers of T directly. An alter-
native suggested by Baker is to map the parame-
ter 7 (0 <7 <) into a new parameter @ (0 <@ <1)
by the transformation 7 =@/[(1 - @)(2d +2)]. After
making this substitution, reexpanding the series
in powers of @, converting the resulting series
into Padé form, and evaluating the Padé approxi-
mants at @ =1 we obtain a new sequence of extra-
polants. We have found strong agreement between
T extrapolants and @ extrapolants for d<3.5 giv-
ing us confidence in our numerical results.

Figure 1 is a graph of the 4th-, 5th-, and 6th-
order T extrapolants for G as a function of d for
0<d<4. A striking feature of this graph is that
the approximants to G, d = 2, are decreasing as
the order of perturbation theory increases, and
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FIG. 1. A plot of the T extrapolants to G for 0 sd <4
from diagrams having up to four, five, and six internal
lines. Note that the approximants to G decrease with in-
creasing order of perturbation theory when d>2.

may even be tending to zero. For d =4 such be-
havior has also been observed by Kogut and Wil-
son® and by Baker and Kincaid.® In Fig. 2 we give
our last extrapolant to the values of the dimen-
sionless effective-potential coefficients R, and

R and observe a similar trend.”

Some of the results in Fig. 2 are verified by
exact calculations which will be reported in detail
elsewhere. These calculations are based on the
idea that in the limit g -, with M fixed, the
functional integral in (2) is dominated by instan-
tons, at least for small values of d. Polyakov®
and Gildener and Patrascioiu® have shown how to
calculate the two-point function in one-dimension-
al space-time using the dilute—instanton-gas ap-
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FIG. 2. Last extrapolant for the dimensionless effec-
tive-potential coefficients Rg and Rg. Note that the ex-
trapolants at first increase and then decrease thus ex-
hibiting the same behavior as the extrapolants to G in
Fig. 1 and Table I. The exact values are 7y (d=0) and
+(@=1), and& (d=0) and £ (d=1) for R and R;, respec-
tively [see (7)].
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proximation. Their calculations, which are
lengthy and difficult, give the result that W,(x,y)
=%Aexp(-M|x -y|), where A is a calculable
constant. However, the general form of W, can
be easily derived. One assumes that in the in-
stanton limit the anharmonic oscillator potential |

is an infinitely deep double well. In such a well
the two lowest energy levels, E, and E,, are
nearly degenerate (E, - E, =M, the renormalized
mass) compared with E, - E, (o > 2); that is (E,
-Eg)/M>1, With this assumption, it follows
that W, has the above form because

W,(x =) =0] T[p (x)@ (»)]| 0) =20, O] @(0) ) | 2exp[— (E, = Ep)| x = »]]

~[{0]p(0)|1) |2 exp(-M|x - p]).

(5)

By a similar argument, we conclude that the higher Green’s functions factor into a product of two-point

functions:

0] ()@ (xy) * * * @ (xan) | 0 =(0] @ ()0 (x)0) * * * (O] @ (¥gnu 1) (x50) | O, (6)

in which the order of the x’s is preserved. The
results in (5) and (6) allow us to compute the co-
efficients V,,, with use of (3). It is remarkable
that the constant A drops out of the final expres-
sion for V,,. Our results are®

Van =M2/[20(20 = 1)] (d=0),
Van =[M™2'T (0 - $)]/[4T (3!] (d=1).

The results in (7) serve as a benchmark for our
numerical calculations; they show that the ap-
proximants listed in Table I and Fig. 2 for ¢ =0
and d =1 have an error of a few percent.

Using our techniques we have also calculated
the first two correction terms in the series ex-
pansion for G in powers of M*"%/g. These terms
are negative and vary with d like the curves in
Figs. 1 and 2.
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