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The critical behavior of the 0(n) classical Heisenberg model in d dimensions close to
n =d =2 is discussed, assuming analyticity in n and d of the renor~alization-group equa-.
tions. In the (d, n) plane there is a line passing through (2, 2) across which the critical
exponents are nonanalytic. For d =2 and —2«~n «~2, a conjecture is presented for the ex-
act form of the leading and subdominant thermal eigenvalues.

PACS numbers: 05.50.+q, 64.60.Kw, 75.10.Hk

Recently, a scaling theory of the q-state two-
dimensional Potts model close to q = 4 was pro-
posed. '~ While this was motivated by approxi-
mate renormalization-group (RG) analyses, ' it
was possible to show that the results in fact fol-
lowed from minimal assumptions on the analytic-
ity of the HG equations, together with previous-
ly known exact results. It is possible to apply
the same methods to the O(n) Heisenberg model
in 2+~ dimensions close to the special case of
the planar model, which corresponds to n =2, ~
= 0, for which some presumably exact results
are known. 4 '

The RG equations take the form

dg/dl = eg+ (n——2)f(g )+4n'y'+ ...,
dy'/dl = (4 —2n/g)y'+ ... .

(&)

(2)

For n = 2 these reduce to the equations studied by
Nelson and Fisher' for the XY model in 2+& di-
mensions: They are a simple extension of the
Kosterlitz' equations. When y'= 0, Eqs. (l) and

(2) reduce to those obtained by Polyakov' and Bre-
zin and Zinn-Justin, ' with f(g) ~g'/2n +O(g'). The
physical interpretation of y (which for the planar
model is a fugacity for the vortices) is ambigu-
ous when (n, d)& (2, 2), but it is presumably con-
nected with the compactness of the O(n) space,

a feature neglected in Refs. 8 and 9. However,
it is sufficient to point out that (l) and (2) are
the only equations compatible with the assump-
tion of analyticity iny', e, and n, and the two
limits described above. They can, in fact, also
be derived from first principles. " The correc-
tions to these equations are O(e'), where e, n —2,
and y' are of the same order. This last condi-
tion is justified since the fixed-point values of
y' will turn out to be O(e).

The fixed points and thermal eigenvalues of
Eqs. (1) and. (2) are

I: g = g, + O(e), f(g,)/g, = e/(n —2),

y' = O(eg, ),

y) =- &+(n -2)f'(g, )+ O(e'/(n —2))+ O(e'),

yr' =4-2n/g, + O(e);

II: g=n/2+O(~),

y' =~/4~'+ O(e'), S =em/2+ (2-n) f(n/2),

yii = (8S/~)'"+ O(e),

y„=- (8~/ )'"+o(~).

In the limit e/(n —2) - 0, I reduces to the fixed
point found in Ref. 9, while as e -0, (n —2)-0,
II goes over into the Kosterlitz-Thouless point. ' '
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Now assume that f(g)/g is a monotonic increasing
function of g. For c &0 and n &2, neither fixed
point is real, and there is no transition, as ex-
pected. For n & 2, only II is real and this deter-
mines the critical behavior. In the remaining
quadrant, for 6 &0, II is unphysical and I deter-
mines the critical behavior. When 6 =0, the fixed
points collide, so that y &' and y &&' become margin-
al, andy& =y». For &&0, both fixed points exist,
but I is an unstable tricritical fixed point, the
critical behavior being determined by II.

For d =2 and n & 2, the leading and subdominant
thermal eigenvalues correspond to different
branches of the same analytic function, with a
square-root branch point at n =2. This is similar
to the situation for critical and tricritical expo-
nents in the q-state Potts model. ' lt is possible
to conjecture an exact form for this eigenvalue in
terms of the quantity x = (2/&) cos '[(2+ n)'~'],
which is rational for integer n between -2 and
+2, and incorporates the branch point. The con-
jecture is

v '=4x/(1+x).

This agrees with the known exact results"'" v =1
and 2 for n =1 and —2, respectively, and gives v

=& for the n =0 polymer problem, in agreement
with series and real-space HG calculations"'"
p =0.750+ 0.005. The other branch gives nonlead-
ing eigenvaluesy'= —2 and —~ for n =1 and —2,
respectively. This agrees with the known spec-
trum of negative integers for these cases. Note

n"

that for n ~ 1, y' is no longer the next-to-leading
eigenvalue.

Close to n =2 the conjecture implies that v '
—(4/~)(2 -n)'" which means that f(~/2) =2/~. The
validity of the conjecture has also been confirmed
for several noninteger values of n with series ex-
pansions. "

The magnetic exponenty~ in the region 4&0
has the form y„='-,'+ O(e). It does not have the
double-valued feature of the thermal exponent,
unlike the case of the Potts model. '

Although the fixed-point structure found above
is strictly valid only to first order in e and (n
—2), by continuity it implies the existence of a
boundary in the (d, n) plane, passing through (2,
2), across which the exponents are continuous
but nonanalytic. This boundary is plotted sche-
matically in Fig. 1. It is reasonable to suppose
that it passes through n =1 at d =1, the lower crit-
ical dimensionality for the Ising model. It would
appear to pass n =3 somewhat below d =3. This
possibly explains why the O(e') calculations of
Brezin and Zinn-Justin, ' which were made about
the fixed point I, give poor results for n =3 and
e =1 compared to the 4-& expansion (v =0.5, vs
v =0.717+ 0.007 from series expansion, "and 0.71
from the 4- e expansion"). To first order in ve,
the fixed point II gives v=0.65. What happens to
this boundary at large n, and why is it not seen
in the 1/n expansions Effects of the compactness
of the group, such as vortices, typically give
contributions of the form exp[- const/g] in the
free energy. For large n, the critical value of g
is O(1/n), so these are effects which never ap-
pear to any finite order in the 1/n expansion.

This work was supported by the National Sci-
ence Foundation under Grant No. PHY78-08439.
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FIG. 1. Schematic diagram of regions of the (d, n)
plane. In I the 2+& expansion of Brezin and Zinn-Justin
(Ref. 9) applies. The critical exponents are continuous
but nonanalytic across the boundary between I and II.
In III there is no transition at finite temperatures.
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The first four coefficients in the effective potential Vgft('Pjg) Zg-f V2 'pg are calculated
for a mass- and wave-function-renormalized gp field theory in d space-time dimensions
in. the limit where the unrenormalized coupling g with the renormalized mass M held
fixed. The accuracy of these numerical results is verified by exact analytical calcula-
tions of the effective potential performed in 0 and 1 space-time dimensions.

PACS numbers: 11.10,Ef, ll, lO,Jj, 11.10,Np

In the previous papers ' we have formulated a
simple procedure for expanding the Green's func-
tions of a gy theory in d-dimensional space-time
in inverse powers of the bare coupling constant
g. In this paper we indicate how such expansions
can be mass and wave-function renormalized,
and report the results of extensive calculations
of the renormalized n-point Green's functions.

The Lagrangian density describing the gcp4 the-
ory in Euclidean space is 2 = f(sq)'+ & m'p'
+ 4 gcp, where m is the bare-mass parameter.
To calculate the connected n-point Green's func-
tions W„(x„.. ., x„) one introduces a source func-
tion Z(x) in the functional-integral representation

for the vacuum persistence function Z:

Z[J] = Jg)(p exp( —fd "x[2+J(x)cp(x)]]

We obtain W„ from Z[J] by

W„(x~, .. .,x„)= ~ ~

b )inZ[J] ~ o. (2)
5

Xl Xn

The Green's functions are renormalized in three
steps: First, the wave- function renormalization
constant Z, is computed from the two-pointGreen's
function by Zs '=[dW, '(p')/dp']~a, . Second,
the renormalized mass M is defined by M'
=Z, [Wa '(p')]~a o. Third, the renormalized n-
point Green's functions are obtained by multiply-
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