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Doppler-free two-photon dispersion has been observed in rubidium vapor near the 5S f/2
—5D5/2 two-photon transition. The experiment was performed by looking at the shape of
the transmission peaks of a Fabry-Perot cavity filled with rubidium. When the nonlinear
susceptibility is large, a bistable behavior occurs. A nonperturbative treatment of the
susceptibility is required for the interpretation of these results.

PACS numbers: 42.65.Gv, 32.80.Kf

When a nonlinear medium is placed inside a
Fabry-Perot cavity, there can be several solu-
tions for the transmitted beam power with the
same value of incident power. In the case of two
stable solutions, the phenomenon is known as op-
tical bistability. " There has been a large amount
of interest in this domain since the first experi-
ment of Gibbs, Mc Call, and Venkatesan. ' In all
the experiments performed in atomic vapors, the
frequency of the beam was near a one-photon al-
lowed transition of the atoms. In that case the
nonlinearity arises from the saturation of the ab-
sorption or of the dispersion. A different possi-
bility ' has been theoretically discussed: It con-
sists of the use of two-photon absorption or two-
photon dispersion. '" In that case, even if the
transition is not saturated, the response of the
vapor is obviously nonlinear. Moreover, since
bistability is generally observed in the standing
wave of a linear cavity, the Doppler broadening
of the two-photon transition is cancelled under
this geometry. "Thus we can expect a very rap-
id change of the bistable behavior in a range of a
few megahertz near the two-photon resonance.
We report in this paper the results of an experi-
ment performed in order to verify this effect.
As shown below, the experiment has brought sev-

eral valuable pieces of information, both on Dop-
pler-free two-photon dispersion and on optical
bistability.

An interesting feature of the two-photon transi-
tion is that all the atoms interact in the same way
with the field either in absorption or in disper-
sion. ' This is due to the cancellation of the Dop-
pler effect: All the atoms, whatever their veloc-
ities may be, have the same energy detuning
from the two-photon resonance. "" In compari-
son with experiments performed with a single-
photon transition, ' it results in two advantages'.
(1) There is no average on the Maxwell velocity
distribution. The atomic response is given by a
simple analytic formula. (2) It is possible to
reach high values of the nonlinear refractive in-
dex because the energy detuning can be of the or-
der of the natural width.

The experiment can be performed with the usu-
al setup for Doppler-free two-photon spectros-
copy."' The light coming from a cw dye laser
is sent into an experimental cell placed inside a
Fabry-Perot cavity. In previous experiments,
bistability was not observed because the nonlin-
ear susceptibilities were too small. We have
chosen to perform the experiment in rubidium
around the 5S,I,-5D,I, two-photon transition (X
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I'IG. 3. Oscilloscope traces of the transmission when
the length of the cavity is swept with a sawtooth. We
have used various oven temperatures, 165, 180, and
200'C, corresponding to the rubidium densities (2, 4,
and 8) & 10 atoms/cm, respectively, and studied the
bistability effect for various detunings Av @v= —dE/h)
of the incident wavelength from the two-photon reso-
nance. On each diagram the first trace from the left
corresponds to an increasing length of the cavity, the
second trace to a decreasing length.

cally predicted: First the transmitted peaks be-
come asymmetrical [Fig. 2(a)]. Then for higher
values of XNI' we expect a different shape for the
two peaks; they should have different heights and
show a sharp edge which corresponds to the tran-
sition from one stable point to another [Figs. 2(b)
and 2(c)].

We did observe this behavior experimentally
(Fig. 3). We show in Fig. 3 three sets of oscillo-
scope traces of the transmission peaks, obtained
at three different temperatures (165, 180, and
200'C) for different energy detunings from the
two-photon resonances (as there are iwo isotopes
and many hyperfine components, our experiment
corresponds to "Hb and to the transition starting
from the F = 3 hyperfine ground sublevel).

It can be seen that at low temperature and for
large energy detunings, the transmission peaks
look symmetrical. On the other hand, for small
values of the energy detuning an obviously bista-
ble behavior appears. One feature is very sur-
prising: The sharp edge is always on the same
side of the peak. It means that XNI' keeps the
same sign in the whole range of frequencies
where bistability is observed (if the sign of XN„'
changes, the slope of the straight line in Fig. 2
changes which leads to a transmission peak with
the sharp edge on the other side [Fig. 2(c)]j.
More precisely, from the experimental data,
we ean determine that gNL' is positive.

Such a behavior cannot be understood if the non-

linear susceptibility is calculated in the frame-
work of lowest-order perturbation theory. In that
case, we obtain for X&&' a curve which has a dis-
persive shape: Its sign changes for the value of
the frequency which corresponds to the two-pho-
ton resonance. However, the experimental ef-
fects can be accounted for by use of theories de-
veloped previously. 4'

We have calculated XN&' when the atomic sys-
tem can be considered as a two-level system con-
nected by a two-photon transition. Such a sys-
tem can be exactly solved and we have found for
gzL' the formula

N (Q„~'I(5E- 2sr../r. )
g@2 ~g&r 2(1 ~z&)

In this formula N is the density of atoms; Q„ is
the matrix element of the trvo-photon operator"
Q =D ~ e(h&a-H, ) 'D ~ e, where D is the electric
dipole operator, & the polarization of the electric
field, and II0 the Hamiltonian of the free atom;
I is the intensity of the electric field; 5E =k~,
—Sing+28 is the energy detuning from the two-
photon resonance with the light shift s of the tran-
sition, s =&(Q„'-Q„)I, taken into account where

Q' =D &(E, —@~—II,) ~D ~ e

+D F(E, +A~-H ) 'D ~ e

I „a d r, are the relaxation rates of the optical
coherence and of the excited state, respectively;
and a is the saturation parameter of the two-pho-
ton resonance, "whose value is IQ„!I/S(r, r„)' '.

There are two terms in XNL'. The sign of the
first one, proportional to ~E, changes at reso-
nance. It corresponds to the polarization of the
medium induced by the two-photon transition.
The second term, proportional to —2sr„/r„ap-
pears at a higher perturbation order (s is propor-
tional to I). This term can be interpreted as a
modification of the linear susceptibility due to
the new distribution of population in the ground
and excited levels in the presence of the quasi-
resonant two-photon excitation. It must be no-
ticed that the sign of the second term does not
change with ~„-2~." I et us now estimate the
relative magnitude of these two terms. The ra-
tio of their maxima is of the order of s/hr, (1
+a')' '. For the present experimental condition,
a is larger than 1 and this ratio can be shown to
be of the order of

(fss,g, -5~,g,/f~„, -,g„,)'"(r.,/r, )'".
Thus it is dependent on temperature because I,
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depends on collisional effects and increases with
the number of rubidium atoms. In our experimen-
tal conditions, the value of the ratio is of the or-
der of 10. This means that the second term of
X, NL i.s predominant. Even if the sign of X NL

changes for a large value of 6S, the correspond-
ing values of XNL' are too small to induce bista-
bility. The theory thus permits one to under-
stand why XN&' apparently always keeps the same
sign. Moreover, the light shift can be theoreti-
cally estimated. Its value is negative and the fac-
tor —2sI'„/I", is positive in agreement with the
experimental observation.

On the other hand, the curves corresponding to
opposite values of the energy detuning are differ-
ent. This is because on the one side of the reso-
nance 5E and s have the same sign and their ef-
fects add up whereas on the other side of the reso-
nance the two contributions subtract from one
another.

In conclusion, we have observed Doppler-free
two-photon dispersion for the first time. We
have shown that it is important to describe the
system with a nonperturbative method in order to
understand the experimental observations. Last-
ly, we have shown that this effect can be applied
to the observation of optical bistability.

We would like to thank Professor B. Cagnac,
Dr. C. Flytzanis, Dr. J. P. Hermann, and Dr. P.
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ing this experiment.
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