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Coupling constant renormalization for SU(N) lattice gauge theories is studied with
Hamiltonian methods. Expansions to O(g™'¢) suggest that the crossover from weak to
strong coupling occurs progressively more abruptly in the variable A =g as N in-
creases. The constants relating the string tension to the scale-breaking parameter A
are estimated for all N. It is suggested that the Callan-Symanzik 8 function develops
a kink in the N — « limit at a nonzero value of A%,
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SU(N) gauge theories are of considerable inter-
est for several reasons. The N =3 theory is be-
lieved to describe the pure gauge-field sector of
hadron physics.! Gauge theories with N >3 may
be relevant to grand unification schemes.? And
finally, there is hope that the N - « limit of these
theories is exactly soluble.?

Considerable progress has been achieved in un-
derstanding the dynamics of SU(2) and SU(3) gauge
theories through their lattice formulations. This
approach makes it possible to do systematic non-
perturbative calculations. Computer simulations

of SU(2),* and strong-coupling expansions of SU(3),°

suggest that these theories, which are asymp-
totically free, confine static quarks. These cal-
culations have shown, roughly speaking, that
gauge theories are weakly coupled at short dis-
tances but cross over to strong-coupling behavior
quite abruptly as larger distances are considered.
We wish to discuss this crossover behavior for
all SU(N) gauge groups and point out some inter-
esting systematic trends as N is varied. Our cal-
culations indicate that the crossover region in the
coupling A% =g®N becomes progressively narrower
as N increases. The constants Cy relating each
theory’s string tension T to its weak-coupling
scale-breaking parameter A are estimated for
all N. We find that Cj increases significantly
with N. We compute Callan-Symanzik 38 functions
for all N and all coupling. The resulting curves
suggest that a kink develops in the crossover re-
gion as N - « and that it occurs at a limiting, non-
zero, value of A% = g°N which we estimate. If real,
this nonanalyticity would imply that a 1/N expan-
sion for SU(V) lattice gauge theories contains
pathologies.

The calculations leading to these results are a

modest extension of SU(3) calculations which have
been discussed in part elsewhere.® Consider the
Hamiltonian of SUNV) gauge fields in 3 +1 dimen-
sions,?

H=(g%/2a){Z,E;*~x 2, tr[U(p) +H.c.]},
x=2/g*, (1)

where E, 2 is the quadratic Casimir operator of
SU(N) on the link I of a three-dimensional cubic
lattice, and U(p) is the unitary fundamental rep-
resentation of the product of group elements on
the boundary of a plaquette p. Quantities of physi-
cal interest can be calculated by use of Eq. (1).
For example, the coefficient of the linear term
in the potential between two widely separated
quarks [ sources and sinks of flux in the funda-
mental representation of SU(N)] can be computed
in a power series inx =2/g*. This quantity, the
“string tension,” is the order parameter of the
theory and has been used to renormalize the
SU(3) theory.® The requirement that the string
tension be independent of the lattice spacing a
determines the dependence of the coupling con-
stant g on a. In particular, for SUN) Eq. (1)
gives an expansion for the string tension,

_&°NN*-1
" 242 2N?
where

W)= 23 t,x™, t,=1,
n=0

W), (2a)

(2b)

and the coefficients ¢; can be found with ordinary
perturbation theory. The theory’s 8 function is
then®

Blg) __dlng _ -1
g dlna 1=-2xW'/wW °

®)
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The series in Eq. (2b) has a finite radius of con-
vergence and can be treated by standard extrapo-
lation methods to probe the weak-coupling region
of the theory. Recall that for SU(3) the 8 function
computed in this way matched the continuum theo-
ry’s weak-coupling 8 function at g~0.9.°

The calculation of Egs. (2) and (3) has been car-
ried out for all SU(N) theories to O(g ™~ '%). Al-
though these are relatively low-order calcula-
tions—the expansion for SU(3) now exists to
0(g~**)—we will assume that they are sufficient
to describe each theory’s crossover region. This
assumption is plausible because of the success of
the SU(3) calculatior—higher orders show that the
match of the weak- to strong-coupling expansions
near g=0.9 is smooth but the higher orders do
not change the low-order estimates of the shape
of the 8 function above this matching region. In
effect, we will be assuming that the SUW) theo-
ries for N>3 confine static quarks in their con-
tinuum limits. Since the elaborate calculations
for SU(2) and SU(3) support this hypothesis, it is
reasonable to apply it to groups of greater dimen-
sionality which have more intrinsic disorder.
Calculations beyond O(g "~ '®) could be done to es-
tablish this assumption.

Our strong-coupling expansions will be renor-
malized by holding the string tension T fixed as
the lattice spacing is varied. This is an unconven-
tional, nonperturbative renormalization condition.
A more conventional method considers scale-
breaking effects at weak coupling and uses a quan-
tity A with dimensions of a mass to set the scale
of deviations from free-field behavior. Since an
SU(N) gauge theory can have but one scale to
characterize its continuum limit, V7' and A must
be proportional,

VT =CyA. 4)

For SU(3), A is measurable in deep inelastic scat-
tering, and VT is known from heavy quark spec-
troscopy, so that a nonperturbative calculation of
C, is of considerable interest. But the real world
contains additional degrees of freedom—Ilight
quarks—which are not incorportate in the present
lattice calculation, and so only a semiquantitative
comparison with experiment is warranted. Any-
way, the dependence of Cy on N is also of inter-
est in understanding gauge-field dynamics.

To determine C, we need the weak-coupling de-
pendence of the theory’s mass scales on the lat-
tice coupling constant. This follows from the

weak-coupling 8 function,’

olng __ B(g)

TToahy T g PoE TR (62)
where
11 N 34 N?
Po=3 Ter?» P73 Werop- (5b)

The subscripts “SL” on A remind us that we are
using a “spatial lattice” regulator. It follows
from Eq. (5a) that

1 /4872 \51/121 - 2472
hoe () (T 003, ©

where we see that the natural expansion parame-
ter for the weak coupling features of each SU®)
theory is A%2= g2N. Since Eq. (5a) does not deter-
mine the scale of aAg, we have set a convention
in Eq. (6) which is borrowed from deep-inelastic
phenomenologists.? With the choice of constants
in Eq. (6), the lattice coupling varies with the lat-
tice spacing as

g%= L +
Boln@Ag,) ?+8,/B,Inln@Ag )2 """ "

()

This formula shows the virtue of Eq. (6)—the two-
loop correction to the B function does not induce
a rescaling of Ag; as a varies.

We have taken the strong-coupling expansions
for a®T and matched onto the weak-coupling scal-
ing law Eq. (6) for each N. For each N both the
Taylor series and its various Padé approximants
were used and compared. These different proce-
dures resulted in the theoretical uncertainties
noted in numerical estimates below. No matter
how the strong-coupling calculations were used,
the same trends in the N dependence were ob-
tained. In doing these analyses it was important
to discover that z =1/g3N is the natural expansion
parameter for the strong-coupling series Eq.
(2b). By explicit calculation of the series one
finds that if they are written in the form

W)= 25 w; 2%, wy=1, (®)

1=0

then each w; has a finite limit as N - «.° This
means that, at least through the order we have
calculated, the strong-coupling B function has a
nontrivial N - « limit when expressed as a series
in z. The values for w; are listed in Table 1.
These coefficients were calculated exactly for
each N. This required developing the Clebsch-
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TABLE I. String-tension expansions and the con-
stants Cy for SU(N) gauge theories. w, =1 for all N
and other unlisted coefficients of order i< 8 vanish
identically.

N Wy wB CN

2 —65.01587 —5140.057 34 80+ 17
32 —17.47059 —1000.801 94 240+ 40
5 —13.62724 —472.33131 561+ 172
6 —13.096 84 — 426.985 44 607+ 174
30P —12.04122 —347.69984 773+ 239

dwg is nonzero for SU(3) and can be found in Ref. 5.
YThese coefficients are within a fraction of a percent
of the N — « limiting values.

Gordan series for SU(N) sufficient to decompose
the product of six U matrices on a link. The N
2, 3, and 4 calculations required special care.’
The N =3 results were checked against other
SU(3) calculations® which used different tech-
niques. The details of these analyses and the
exact coefficients will be discussed elsewhere.
The matching of the strong- and weak-coupling
string-tension calculations is shown in Fig. 1.
We observe that these calculations are consistent
with our assumption that there is a smooth transi-
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FIG. 1. Matching strong and weak string-tension
expansions for N =2, 3, 5, and 6. The parallel lines
are from Eq. (6) and the curves are the O(g” %) strong-
coupling expansions.
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tion from weak to strong coupling for each N.
From these curves we read off the values of Cy
listed in the table. The value which may be of
most immediate interest is, for SU(3),

\/-T = (2403: 40)ASL . (9)

Higher-order SU(3) calculations give additional
weight to this result.® The uncertainty in Eq. (9)
reflects the fact that the Cy are exceedingly sen-
sitive to the coupling of the crossover region.
Two comments concerning these results are in
order. First, the Cy increase with N. This trend
is a consequence of the SU(N) matrix character
of the link variables. Recall that for O(N) nonlin-
ear sigma models in 1 +1 dimensions, the ana-
logs of Cy decrease with N and approach a finite
limit as N~ «.'° And second, the huge size of C,
is partially an artifact of use of a spatial lattice
to do perturbation theory. Typically momentum-
space renormalization methods are used in deep
inelastic phenomenology. With each method there
is a different A. The relation between momentum
space (Ayom) regularization and a Euclidean lat-
tice (Ag.) has been computed'':

A mom/As=83.5 (10)

for SU(3). The relation between Ag; and Ag
must be computed,'? however, before a useful re-
lation between VT and A, , is obtained from this
calculation. Presumably the large change in
scale in Eq. (10) absorbs much of the change in
scale in Eq. (9).

The important trends in Fig. 1 are made more
visible if the B functions are plotted for each N.
With use of Eq. (3) the B functions of Fig. 2 were
obtained numerically from Fig. 1. Note that as N
increases the crossover regions from weak to
strong coupling become narrower and move to a
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FIG. 2. B functions for N =2, 3, and 6.



VOLUME 45, NUMBER 6

PHYSICAL REVIEW LETTERS

11 AucusTt 1980

small but nonzero coupling. The curves suggest
that as N — « the B function develops a kink at A2
=2.7."* Transitions of this sort have been ob-
tained in studies of one-plaquette models of lat-
tice theories.'*

We conclude this article with an observation
concerning the reliability of finite lattice calcula-
tions of the crossover regions. Note from Fig. 1
that the value of a®T where the strong-coupling
calculation matches the weak-coupling scaling
law is 0.3-0.4, and is roughly independent of N.
But (@®T)"'/? is a measure of each system’s lin-
ear correlation length, and it is about 1.6-2.0
when measured in units of the lattice spacing.
This is quite small so that ordinary methods of
analysis such as strong coupling expansions, fi-
nite size scaling, computer simulations, and
analytic solutions of small systems should be
adequate here.

The calculations presented in this article are
just exploratroy. As explained in the last para-
graph, they appear to be at least reasonable and
self-consistent. It would be good to calculate
higher orders and to run computer simulations
for various SU(N) gauge groups.
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Unification of strong and electroweak forces implies that protons (and bound neutrons)
decay. Modes like m, e*7, and p*K are expected, while modes like p*m and e*K ? are
“ Cabibbo” suppressed. Branching ratios can reveal much about the nature of the unifying
group and the origin of fermion masses. Plausible models of unification and flavor mixing
give surprisingly different predictions for two-body branching ratios.
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Once, weak decays of hadrons involved only
one flavor-mixing parameter—the Cabibbo angle.’
With N-fermion families, (N - 1)® parameters de-
scribe the flavor mixing of electroweak phenome-
na.? Most electroweak-chromodynamic unifica-
tions predict a new interaction which violates the

conservation of baryon number. Protons and
bound neutrons decay into states with S=0 or 1
containing one antilepton (e*, u* ,or v). Branch-
ing ratios of these AB=AL =-1 decays are not
necessarily determined by the (N - 1) flavor-
mixing parameters, a point stressed by many
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