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The properties of an electron in a disordered solid are discussed with use of a matrix
nonlinear o. model first introduced by %egner and Sch'afer. The model is defined on the
noncompact space O(M, M)/l. O(M) && O(~l where M is the number of replicas. This
noncompact symmetry represents the essential physics of the problem. It is found that
all states are localized in two dimensions; above two dimensions for weak disorder there
are mobility edges, but these merge above a critical amount of disorder and a11 states
become localized.

A = ,'It f d'x Tr[-s„V(x)][a„V(x)],
(2)

where (Refs. 2 and 4) K = rtR'a e/4d and X, = (1
-E'/E, ')'~'. This action arises on averaging a
product of single-particle Green's functions
6 (r, r', z~), p = 1,2 over the distribution of the
matricesg. ' It is defined on a set of real sym-
metric matrices, V'=A. p'1, if the two energies lie
on the same side of the real axis. However, in
the case of most interest, the conductivity, the
energies, z~, lie on opposite sides of the real
axis and a model of complex symmetric matrices,
V = &p 1 results. This diff erence reflects the
distinct symmetries of the two cases. In the first
case, the system is invariant under orthogonal
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The electronic properties of a disordered solid
may be described by the Hamiltonian"

I; (1)
r, n

r', n'

at each site r of a regular lattice, spacing a,
there are n orbitals o. . On-site energies and in-
ter-site hopping are randomly distributed. Here
we will take/ to be a real symmetric matrix. In
a series of interesting papers it was first con-
jectured' and then proved that the properties of
the system described by Eq. (1) may be discussed
in terms of a field theory with action'

A = —(1/2t, )f d"x Tr[s~ '(x)][8~(x)],
~'=1, g~O(M, M)/[O(M)x O(M)],

(4)

transformations and the matrices V are elements
of the compact space O(2M)/[O(M)xO(M)] where
M is the number of replicas in the spaces p = 1
and 2. For the conductivity, the symmetry is
hyperbolic and the fields belong to the noncom-
pact space O(M, M)/[O(M) x O(M)].

In Ref. 4 it was argued that at the level of per-
turbation theory the two models are equivalent
and therefore the critical properties in the hyper-
bolic case, namely the behavior of the electronic
system near a mobility edge, could be described
by the generalized compact nonlinear 0. models

A = (1/2t, )f d'x Tr[a~ '(x)][S~(x)],
g' = 1, &~ O(21')/[O(M)x O(M)],

discussed previously by Brbzin, Hikami, and
Zinn-Justin. ' In this Letter we will point out the
important diff erence between the compact and
noncompact models in a 2+ e expansion. As we
shall see, it is precisely this difference which
represents the essential physics of the mobility-
edge problem.

First, we note that the action Eq. (2) for &'
= —~p'1 can be written in terms of real matrices
g as
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where t, = 1/KA, ,'; g can be parametrized, for
real y, as

(cosh'
g=U

(sinhq

—sinhy )
[pT

—coshy'

where U is a 2M&2M matrix with M&M orthogo-
nal blocks on the diagonal and zeros elsewhere.
If one takes U constant, it is easy to check that
A = (M/t, )J d"x(B„y)(B„y)which is positive defin-
ite. Hence, the partition function Tre " is well
defined. We will discuss these noncompact o

models in detail and show how the questions of
localization and a mobility edge are described
naturally in this context.

First, we will illustrate the main points of the
argument for the simplest examples: the origi-
nal compact O(N)/O(N- 1) o model whose fields
are defined on a sphere' (N= 3, 2, and 1 are the
Heisenberg, planar, and Ising models, respec-
tively), and the noncompact O(N- 1, 1)/O(N- 1)
g model whose fields take values on a byperbo

loid. Both surfaces have constant Riemannian
curvature; + 1 for the sphere, —1 for the hyper-
boloid. The coupling-constant r enormalization
may be calculated using a method developed by
Polyakov. "' The action for a spin confined to an
N-dimensional sphere is

A (n) = (1/2to) f d x(8&n„)(8&n„),

nn =1, (6)

The orthonormal basis (e«, i = 1, . . . , N tobeys

ing "gauge" fields A„ij =e;&~„e,.z, we arrive at
an effective action, to one-loop order,

where o. = 1,2, . . . , N and we will work explicitly
ln two dimensions. If g ls a slowly varying back-
ground field with wavelengths greater than A ',
then fluctuations on the sphere (with wavelengths
between A ' =a and A ') relative to n„may be pa-
rametrized as

N

n = (1 7')'"n-+g n;e;
i=2

A, f~
= (1/2to) J d x[(1—P)(8&n~)(8&n~)+(8&n)(8&m) —'p&A&&~A&~, p, ]

If one isolates the divergent terms in the integration over p fields, one gets

A'(n) = (1/2t) f d'x(B„n~)(B„n~),

where

1 1 N-2 A
ln —.

t to 2w

On the other hand, the action for an N-dimensional hyperboloid is
A"(n) = —(1/2t, )f d'x(B„n~)(B„n ), n n„= 1,

(10)

where raised indices are defined via a metric@ g which has one "+1"and N-1 "-1"on the diagonal
and zeros elsewhere. The fluctuations on the hyperboloid relative to a background field n are given by

N

n„= (1+7')'~'n + g m;e;„,
i=2

(12)

where the basis {e;,i = 1, . . . , N'I obeys e, =n„, e;"e,.~ =g, , The "gauge" fields in this case are A
8

r ~ ' ~ r 1n nr i jo(, i j pij=e, B„ej8 and the effective action is

A, p,
"= (1/2t, )f d'x[- (1+P)(B„n )(B„n„)+ (B„w)(B„fr)+n,A„,, A„„p,]..

We recover an action of the same form as Eq.
(11), but with a coupling constant

1 1 N-2 A—=—+ — ln =.
t to 2p A

' (14)

Note the change in sign of the correction term.
This is characteristic of the transition from ro-
tational to hyperbolic symmetry. In general, in-
tegrating out the constraints in Eqs. (6) and (11),

we are led to Lagrangians of the type

I.= (1/2t, )(B„n')g;, (n)(B„m') (15)

in terms of the N —1 independent fields m, . For
the general matrix models, corresponding to com-
pact O(N)/[O(N -P) x O(p)] symmetries, studied
by Brezin, Hikami, and quinn-Justin, ' the fields
m,. are their V '; i =1, . . . ,p; a =p+1, . . . , N.
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To discuss the renormalizability and critical
properties of the general Lagrangian Eq. (15) we
use a formalism developed by Honerkamp. " We
parametrize the fluctuations relative to a vector
y„ the solution of the classical field equations.
Schematically z, = y, + e, where c,. is the geodesic
between cp, and p, Explicitly,

~i ~i + pi l pi (~)pkpl +

Here I"=g"I",. where I'(ll, y) is one-half of the
square of the distance along the geodesic and, j
denotes a derivative with respect to p ~; I'k', are
the Christoffel symbols

~~r~»l g Kjl, k gjk, l Ski ~
j]'

Substituting in the Lagrangian, expanding and
keeping terms to second order in F', we find

(I/2t, )(i"e'r'+r'{[p"(q)t „(V)]. 'C. (O)]i'"I"t' . ' ~
k l

Pp a~ ea k z~k~PP ~eg gkl a P

C„=e.'e, '(s „ill') (8„V')R»;; l

(18)

(20)

Rk, , , is the Riemann tensor and we have intro-
duced fields e (y) associated with the metric,
e,'e, ' =gkl, e,ke» = 6,, Equations (16)-(20) are
the generalizations of Eqs. (7), (8), (12), and
(13) to spaces of arbitrary curvature. As before,
we obtain an effective Lagrangian by integrating
the partition function over the quantum fluctua-
tions I". To one-loop order we find

(21)

! in Ref. 6. The crucial difference for noncompact
spaces is that the sign of the quartic interaction
in the effective Lagrangian changes. This leads
to the change in sign of the one-loop contribution
to the P function, P(t) =st/sinA. In 2+a dimen-
sions, for the specific case O(M, M )/[O(M) xO(M)]
of interest we find

P„(t)=et+il '(M-1)t'+0(t')

where
dkI(A)-
(2 ). ~2 ~ (22)

and so there is no nontrivial fixed point for M& 1.
However, the disordered electronic system cor-
responds to M= 0, so that

The theory is renormalizable if Tr[C(p)] has the
same form as L(ltl). Now

(23)

where R,&
is the Ricci tensor, and so the condi-

tion for renormalizability is that R,&
=rg,.

&
for

constant r. This is the definition of an Einstein
space; r is known as the average curvature. It
is positive for compact spaces and negative for
noncompact spaces. Thus, the coupling- constant
renormalization for Einstein space is

1 1 r A
ln

t t, 2n A
(24)

The spaces O(N)/[O(p) xO(N-p)] are Einstein
spaces with r =N-2." This is the result of Bre-
zin, Hikami, and Zinn-Justin. ' For the sphere p
=1, we recover Eq. (10). The noncompact spaces
O(p, N -p)/[O(p) xO(N -p)] are also Einstein
spaces, but with r = —(N —2). Our previous re-
sult Eq. (14) was for the special case of the hyper-
boloid, P =1. These results can also be obtained
by a direct generalization of the method outlined

p„,(t) = Et w't'+0(—t') (26)

and there is an infrared unstable fixed point at t,
=me. This corresponds to a mobility edge.

The renormalized coupling t is given in terms
of the physical parameters E and l (=R/a is the
mean range of a single hop in units of the lattice
spacing) as t' = (c/I2)E, '/(E, ' -E2), E,' &E ', and c
is a numerical constant. In two dimensions there
is a single unstable fixed point at t, = 0. There-
fore, for any finite amount of hopping /, flow in
energy, as the length scale increases, is to the
edges of the band and localized states. We con-
clude that all states are localized in two dimen-
sions. Above hvo dimensions, two different situ-
ations can arise depending on the strength of the
disorder. If the disorder is weak, so that the
range I is large, specifically I & [c/(d —2)il]' ',
then there are mobility edges +E„such that for
E'&E,' flow is towards E = 0 and extended states,
whereas for E'&E,' flow is towards the edges of
the band and localized states. This is illustrated
in Fig. 1. However, as the disorder increases
the mobility edges move in towards the center of
the band and a point is reached (I =[c/(d —2)ll]'~')
at which they merge; thereafter all states are lo-
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this follows directly from the noncompact symme-
try of the model.
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FIG. 1. Density of states p(E) in a weakly disordered
solid above two dimensions showing the existence of
mobility edges at +E, and flow under renormalization-
group trans formations.

calized.
Finally, noting that t is the dimensionless re-

sistance, we see that in Eq. (26) we have derived
from first principles the P function of Abrahams
et al." (tcc i/g of this reference). This justifies
the assumption of one-parameter scaling. " Fur-
ther we note that it is crucial for their arguments
that the sign of the first correction term in the P
function be negative. As we have pointed out,
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The L» near-edge fine structure has been investigated in electron-energy-loss spectra
from thin films of 3d transition metals and an unexpected departure from the statistical
I-3/L2 "white-line" intensity ratio of 2:1 is reported. For Ti, a ratio of 0.7:1 is ob-
served, while for Fe and Ni the ratio exceeds 3:1, indicating a systematic trend within
the period. It is suggested that many-electron effects may be important.
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In this Letter we report an anomaly in the rela-
tive excitation probabilities of I-, and I-, inner-
core levels in the 3d transition metals, which we

have studied with electron-energy-loss spectros-
copy (EELS). At small momentum transfer the
matrix element in the cross section for inelastic
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