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Diagonalization of the Kondo Hamiltonian
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The Kondo Hamiltonian is exactly diagonalized with use of a modified Bethe Ansatz.
The zero-temperature magnetic susceptibility is also calculated.

PACS numbers: 75.20.Hr

The Kondo Hamiltonian, ' describing the interaction of a localized magnetic impurity with electrons
in a metal, is given by

H = —i J qr, ta„y,«+Ay, ~(0) ~ 0„(Pb(0). (1)

Here y, (x) is the electron field, a = 1,2 are the spin indices, and 5 describes the spin- —, impurity.
There is no kinetic energy associated with B.

I slightly gene'ralize the model, allowing the impurity to move, requiring, however, that it carry no
kinetic energy. One may then form a localized wave packet for the impurity which will not disperse.
In other words, since the energy is degenerate with respect to the motion of the impurity, one carl sum
over its momentum and localize it [see also Eq. (7)]. Our formalism allows us to consider an arbi-
trary but fixed number of impurities arbitrarily situated.

I introduce a new field g describing both the electrons and the impurities. Thus P = P, where a is
the previous spin index and a is a "purity" index, with a = 1 (o. =0) corresponding to the electron (im-
purity). I impose on ~) canonical commutation relations and thus consider

t I ( 2 (1 +y') s &„0.6 '&f—«-g.bt(r„)as&.b Obsla'a'8 )a.'8' +a'b' 4b' tt'

The matrices y& (&=0, 1) are the usual two-dimensional Dirac matrices and are introduced so that only
electrons and impurities interact as is the case in (1). I choose the representation y'= o", y'= —io',
yb=a', and |I =q~y'.

The Hamiltonian H is now similar to that of the chiral Gross-Neveu model' [or the SU(2) Thirring
model']. The only difference is that in the kinetic energy term the matrix 2 (1+y'), with its eigenval-
ues o =0, 1, replaces the matrix y' and its eigenvalues a =+ 1. H acts on states whose general form is

N N

I»= f II~(X„".,X.,P„"., P...„"...)II C.', &, (X,)I0),
i=1 i=1

where )0) is the empty Fermi sphere defined by (,8(X)~0) =0. In order for ~F) to be an eigenstate of H,
7 (X, P, a) must be an eigenfunction of the N-particle Hamiltonian

N N

It =-i Q P;Bt+J'Q 5(X;-X~)o't ~ o, (P; —P, ) .

Note that the impurities, corresponding to P,. =0, do not carry kinetic energy and only electrons and
impurities (P, up, .) interact. h may be rewritten a.s

h=-t QP, &, -2J P &(X;-X,)P,"(P, -P,)'-& g &(X -X)(P, P)', - (5)

where I have used the antisymmetry of the wave function to replace the spin exchange operator —,[1
+ v, ~ ct] by a "purity exchange" operator P 8" given by P &

"F(X,P;, . . . , P, , a) =P (X, P, , . . . , P„a).
If one drops the last term in Eq. (5), one obtains the N-particle Hamiltonian that was studied in Ref.

(5). It was shown there that F(X,P, a) could be constructed by means of a generalized Bethe-Ansatz
technique, ' which I briefly review.

As h no longer contains the spin, one may write 7 (X, P, a) =E(X,P)P(a), where P(a) is the spin wave
function. It is described by a Young tableau [N-M, M], and its conjugate describes F(X,P). This part
of the wave function is constructed as follows: In the region in configuration space defined by XQ1
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- X@,- ~ ~ ~ - XN, E is given as a superposition of plane waves labeled by N momenta K, and purities

N N

{X,p) =g ~, (Q) exp(i g K„X~,.)g 5„.. .
The energy eigenvalue is

(7)E =g; a;K;.
Here P = (P„.. . ,P„)and Q = (Q„.. . , Q~) are permutations of the numbers (1, . . . , N) and ($~(Q)) is
a set of N!x¹!real numbers to be determined. 1 denote by N' (N') the number of electrons (impur-

ities), namely the number of n's equal to 1 (0). 1V' and N' are conserved quantities and characterize
the state.

The imposition of periodic boundary conditions on a line segment of length L and the requirement of
proper discontinuities of the boundary of each region Q leads, via a lengthy algebraic analysis, to the
following condition on the momenta K,. of the electrons:

K,. = (2m/L)n, + (N'/L) y +L ' Q [g (2A
&

—2)—v], j = 1, . . . ,N',
y=a

where the A's are a set of M numbers, all distinct, determined from

N'g(2A -2)+N"g(2Ay) = —2mIy+Q g(Ay —Aq), y = 1, . . . ,M,

where

g(X) =-2tan '(X/C), p~ g(p, C =2J'/(1-J ), e'~=(1+iJ)/(1 —iJ).
The I 's are haU integers (integers) when N-M is even (odd) and the n,. 's are integers, cut off by the

band width D,
~
(2p/L)yg, ~

D. The inclusion of the last term in Eq. (5) does not change the Ansatz but

merely modifies C and y. One finds

C =2J, y =0. (10)

Eigenstates thus are determined by the specification of the quantum numbers (n, ) and (I ), and the
corresponding energy is

Ne N

Z = g (2g/L)n, + (N'/L) g [g (2A —2) —m].
i= 1 /=1

where

K(X) =(C/m)/(C +X ), f (X) =(2C/m)(N'/[C +4(X- 1) ]+N'/(C +4X )).
By integrating Eq. (12) with respect to A, one finds, M = f"„vo(A)dA= 2N, which is the requirement for
a singlet. The limits of integration in Eq. (12) being + ~ the solution is easy to find and is given by

a, (A) = (2C) '(N'/cosh[m(A —1)/C] +N'/cosh(mA/C )),
so that the ground-state energy is

. Ne

Eo = g (2v/L)n, + (N'/L) f dA cro(A) [g (2A —2 —p].
j= 1

Excited states are obtained by changing the quantum numbers (Iz) and (n,.) from their ground-state
values. Thus, for example, inserting two holes in the (Iy) sequence (i.e. , Iz+, =I +1, yvy', y' and

(14)

380

One proceeds now to discuss the ground state and some of the excitations. I shall consider the anti-
ferromagnetic case J&0 and assume N to be even.

The ground state is a singlet constructed by choosing the I&'s to be consecutive and the n,. levels to
be at their minimum. For N large it is convenient to introduce the A density o(A) defined by: 1/o(A&)
=A +, -A . For the ground state it must satisfy'

cr, (A) =f (A) —f K(A -A')v, (A')dA',
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I .+, =I& + 2, i = 1,2) leads to a change b v in the A density, '
y;+z y;

&o(A) = - fdp(») 'e"'[exp(- ipA') + exp(- ipA')] [1+exp(-cl pl)].

(16)

S =N- Kvi,

where M is the number of down spins, given by

M = f v~(A)dA.

Here A' and A' are the A's corresponding to Iy, + 1 and Iy + 1. The corresponding energy is
Z' E,+=(Aa(L)(a+2tan'[tanh[2a(A' —t)/C]}+2tan '[tanh[2a(A* —t)iC]} .

This state is a triplet as can be seen from calculating hM, AM = f Ao(A)dA = —1.
A singlet excitation (i.e. , AM =0) is similarly constructed O. ne generates two holes at A' and A'

but adds two complex A's at A'= a(A'+A')+ 2iC ". The singlet and triplet states are found to be de-
generate in energy.

In a similar manner all further excitations can be discussed. One may now proceed, in the frame-
work of the exact solution, to discuss the thermodynamics of the model, the magnetization curve, the
scattering phase shifts and so on. Here I concentrate on the magnetic susceptibility at zero tempera-
ture, y. One can follow methods developed earlier in the Heisenberg' and Hubbard' models.

The susceptibility is given by y '=p '[O'E(S)/SS']z „where E(S') is the minimum energy of the sys-
tem when magnetization pS is present. The magnetic moment p is taken to be the same for electrons
and impurities, and

The density o~ now satisfies

v, (A) = f (A) —j"z(A A')0—,(A')dA'

The energy E(S) is then

(19)

E(S) =g(2m/L)n, . +(N'/L) f dAo (A)[8(2A —2) —g]. (20)

This is indeed the minimum energy for a given magnetization S as is obvious from Eq. (16). For A', A'
large and negative, a very low-energy triplet is excited. The integration limit B, determined by the
magnetization S, thus characterizes a macroscopic excitation of the ground state, in response to an
external magnetic field in whose presence Sg 0. As the absolute ground state (S = 0) corresponds to
B,=~, we shall be interested in B»max(1, C).

Equation (19) can be rewritten as

o (A) =v, (A)+ f R(A A')o (A—')dA', (21)

where

R(A -A') = f (dp/2m)e "' '/(1+e ')

is the resolvent of K(A' -A") satisfying

f (1+R)(A-A )(1-R)(A -A-)dA =6(A-A ).

The energy and magnetization are given, respectively, by

E(S)=E,+(A['/L) j 'dAo, (A)II(A), S= f ' o, (A)dA,

where

II(A) = f dA'(1 R)(A —A')[e(2-A —2) —rr] =2tan '(exp[-m(A —1)/C]} —~.

For A ~ -B, o~(A) satisfies

o~(A) =C '[PI+I)I'e" ] exp[n(A —1)/C]+ f „R(A-A')a~(A')dA'+O(e" ' )

(22)

(23)
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and we find (omitting steps detailed in the third
paper of Ref. 9)

N' vr S'
L 2 N'+N' exp(v/C)

The susceptibility thus is

1,N'+N' exp(m/C)

(24)

The first contribution to y (when N' = 0) is just
the Pauli susceptibility y~ =m 'Lp'. The second
term 6y, the change induced by the impurities, is

and is related to its exact integrability and the
infinite number of conserved charges resulting
from it. This property is destroyed by various
approximation schemes employed thus far.
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tt (N'/L)exp(- m/C) '

exhibiting the quenching of the impurity moment.
The scale T, = (N'/L)e " characterizes the

physics in the scaling regime, T «N'/L. To nor-
malize it with the prescription of Ref. 3 one has
to construct the high-temperature behavior (T,
«T «N'/L) of the model. This will be discussed
in a forthcoming work.

The dependence of the physical scale T, on the
coupling constant is determined by the cutoff pro-
cedure, specified after Eq. (9). The usual prac-
tice which restricts the free wave functions leads
to an additional factor of the square root of the
coupling constant. " But for a renormalizable
model in the scaling regime cutoff effects can be
neglected and various procedures are equivalent
up to redefinition of the coupling constant.

The linear dependence of 5y on N' is at first
sight surprising. That the impurities do not in-
teract is a special feature of the Kondo model
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