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A variational principle is proposed for constructing equilibria with low free energy in
toroidal plasmas in which relaxation is dominated by a tearing mode of single helicity.
States with current density vanishing on the boundary are constructed. Theoretical pre-
dictions are compared with experimental data from reversed field pinches and tokamaks.

PACS numbers: 52.55.Gb

The formulation of a variational principle for a
complete class of static equilibria of toroidal
plasmas is due to Kruskal and Kulsrud.! They
characterized equilibria for ideal plasmas by a
nondenumerable set of topological invariants
derivable from the ideal hydromagnetic equations
of motion. A laboratory plasma, however, is
inevitably subject to nonideal effects such as
those associated with resistivity or microturbu-
lence. Taylor? has conjectured that the global
invariant K= jy a@r K -B/2, first introduced in the
astrophysical literature by Woltjer® for a perfect-
ly conducting plasma, remains an invariant even
in the presence of a small but finite amount of
dissipation. By minimizing the energy W= JVO dr
X B?/2 subject to the invariant K, Taylor has
argued that a toroidal discharge, initially violent-
ly unstable, may relax into a force-free equili-
brium state given by ]T=A§, where A is a constant.
Taylor has provided no detailed justification for
K conservation, but his theory has attracted much
attention because it agrees satisfactorily with ex-
perimental observations* on field reversal from
Zeta, Unfortunately, for tokamak discharges,
where the toroidal field is approximately constant
across the plasma, Taylor’s theory predicts flat
current profiles, which are usually not observed
experimentally. Even in reversed-field pinches,
the toroidal current is observed to be small near
the wall* which in general violates the relation j
=AB. We interpret these observations to imply
that the replacement of Kruskal and Kulsrud’s in-
finity of constraints by a single one was too dras-
tic a step; that a reasonably well-confined plasma
preserves at least a few more approximate in-
variants over the time scale on which the growth
and nonlinear development of tearing instabilities
takes place. This time scale is, of course, short
compared with the time scale of plasma trans-
port, which is what determines the gross features
of the current and pressure profiles. Thus we
seek a variational principle which selects a spe-
cial subset of the complete class of equilibria of

Kruskal and Kulsrud, including those which can
be sustained even on the transport time scale.

The shorter the time scale considered, the
better preserved are many approximate invar-
iants of motion. We are thus led naturally to con-
sider the growth and decay of the fastest-growing
tearing mode to be the mechanism responsible
for the breaking of the ideal constraints, From
linear and nonlinear theories of tokamak stabil-
ity,® we know this mode to be the m=1, n=1 tear-
ing mode. Indeed, there is experimental evi-
dence® that discharges in the “internal sawtooth”
regime in which the plasma exhibits soft m=1,
n=1 activity uncoupled to weak higher harmonics
(as opposed to conditions under which strong
coupling to m =22, =1 modes leads to a major
disruption with global flattening of the current
profile, in accordance with Taylor’s theory) are
particularly favorable for confinement in toka-
maks. Even during past experiments in pinches,?
m =1 helices are observed prior to field reversal.
For pinches the » number of the dominant mode
should be such that the resonant surface falls
within the plasma. However, predictions for F-6
trajectory and other qualitative features in this
theory are not very sensitive to the choice of the
dominant mode, We shall therefore, confine our-
selves to the m=1, n=1 mode, given its impor-
tance for tokamaks.

In the following, we first assume the existence
of a tearing mode of single helicity which grows
from an axisymmetric state, saturates, and de-
cays back to a new axisymmetric state. Although
we are mainly considering the m =1, n=1 mode,
it is instructive to allow a mode of arbitrary
helicity., Within the quasi-ideal model,” we find
that there is an infinite set of constants of the mo-
tion for each assumed helicity. The special role
of the invariant K is confirmed by the observa-
tion that it is the sole occupant of the intersec-
tion of these sets. The model, which is described
in Fig. 1, allows for compressible and incompres-
sible displacements of the plasma. The contours
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FIG. 1. Model of magnetic reconnection.

indicate the so-called auxiliary magnetic field
(Bg-7B,/Rq,)6 for a cylinder with periodicity
length 27R in the z direction which vanishes ini-
tially at the singular surface q=vB,/RBg=q,,
shown by the dashed line in Fig. 1(a). In the ini-
tial state the plasma is assumed to be unstable
to a helical perturbation of pitch ¢, resonant at
the singular surface. The argument is based
purely on the assumed helical topology, and is
thus valid also for a torus to the extent that the
assumption of single helicity is valid. The plas-
ma flows from the vicinity of the original mag-
netic axis, M,, into a magnetic island with a new
magnetic axis, M.. Reconnection occurs at the
x point; otherwise the plasma is assumed ideal.
Surfaces S, and S, [Fig. 1(b)], for example,
merge to form surface S [Fig. 1(c)], conserving
helical and toroidal (but not poloidal) flux. We
consider closed helical field lines of the same
pitch (g,) as the separatrix, drawn on S,, S,, S,
and S,, the surface of the plasma in contact with
the perfectly conducting wall. We define 2mmy ,,
2mmy,, and 2mmy _plus 27®, as the fluxes cross-
ing helical strips with one edge on S, and the
other edges on S;, S,, and S, respectively, where
2n®, is the total toroidal flux. x,, X, and x.
are surface quantities,! and are conserved on the
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FIG. 2. Helical flux function x(®) before and after re-
connection.

time scale of the instability. Since S, S,, and S
share the separatrix at the instant of reconnec-
tion, we have x,=x,=X .. During reconnection,
the toroidal flux trapped between S, and S, re-
mains trapped in S. Assuming that the toroidal
flux function =0 at M,, we have 27®,=27(®,

- &), where 27®,, 27®,, and 27®,, are the toroid-
al fluxes enclosed by the surfaces S;,, S,, and S,
respectively. The total toroidal flux 27®,, en-
closed by the plasma surface S,, is a global in-
variant by virtue of the boundary conditions. The
remaining surface quantity of interest is the
poloidal flux function ¥, We assume that ¥=0 on
S,. It is easy to see that the three surface quanti-
ties x, ¥, and ® are linked by the relationship
X=q,¥% — ®. The helical flux x(®) is shown in Fig.
2. Since ¥/(®)=1/q we have x'(®)=q,/q - 1. Ini-
tially then, x has a maximum x, at ¢ =¢,. In the
final state [Fig. 1(d)], which has lower energy
than the initial state,” y is a monotonic function
of ® (Fig. 2). For the initial state, we obtain the
double-valued function @ (x) with branches ®,:
[XO)Xs]-' [an)s] and (1)2: [Xp)Xs]" [q)s!q)k] . Thé
final toroidal flux function ® .(y) after reconnec-
tion is ®«(x) =2,(x) = @, (x) for x =[x,,x,] and
@.(x) =®,(x) for xE Xy, X -

Following Greene and Johnson,® we represent
the magnetic field B=V¢xve(V) Xve(V) X V6 in
the coordinate system (V,6,f). With the assump-
tion that the scalar and vectof potentials are sin-
gle values, $c A+ dl must be constant in the time,
whether the contour C is drawn on S, in the toro-
idal or poloidal direction. These conditions are
satisfied by the choice A= ®(V)V0 - ¥(V)V¢, with
® vanishing on the magnetic axis, and ¥ vanish-
ing on S,. [Since ¥(V,) - ¥(0) is not conserved
during reconnection, K will not be conserved if
we take ¥(0) =0, as concluded also by Kadom-
tsev. ]
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We consider now the functional

>

§ (277)
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Glw) f Erw(y)

du(x)lé(x) -z{e(0x}'1, (1)

where w(y) is an arbitrary function and du(y) = w (x)dx may be looked upon as an infinitesimal invariant
measure convected by the plasma. Since ®(y) is a double-valued function in the initial state, and

single valued in the final state, we have to be careful in interpreting Eq. (1).

- %{X(q’z - <I’1)}']:

g7 Co= [ dul®, = 30@) 1+ [ dul(®, - @)
Therefore, to the extent that du(y) is arbitrary,
G represents an extended class of global inte-
grals preserved by all ideal motions and those
nonideal motions that are permitted by the type
of reconnection process considered here. K,
which corresponds to the simplest choice w(y) =1,
is only one member of this class, but the only
one independent of g,. It may be shown easily
that G is gauge invariant.

We suggest now the following variant of the
thought experiment of Kruskal and Kulsrud.! We
imagine a slightly nonideal plasma contained in
a toroidal vessel with perfectly conducting walls.
The plasma is turbulent with tearing modes of
different m and n. The existence of fine-scale
tearing destroys all invariants to some extent,
except K = f @rK -B/2. On a short time scale,
however, the m=1,n=1 mode may be assumed
to be 1east affected by other modes, and the
“first moment” with respect to x (=¥ - @), K,
= fVo @7 XA -B/2 the best conserved of all invar-
iants other than ¢, and K. Since the two latter
invariants are, respectively, linear and quadra-
tic in the fluxes, the choice of the functional K,
cubic in the fluxes, as the next best invariant
seems eminently reasonable. We shall see that
this choice is vindicated by agreement with ex-
perimental observations.

We seek, therefore, minima of W= f d*r B*/2
subject to the global invariants K= d"r XA -B/2.
We must have W —-a0K — ), 6K, =0, where A and
A, are Lagrange mult1p11ers With the boundary
conditions 7 -B=0, 6¥=0, 6&=0 at the conducting
wall, we obtain the Euler-Lagrange equation J
=A[1+(¥ - ®)/®,]B, where we have chosen 3x,/2

=2®, in order that the toroidal (and poloidal) cur-
This is an experi-

rent density vanish at the wall.
mental boundary condition violated by Taylor’s
theory.*

For a straight cylinder we use cylindrical polar
coordinates (7, 6, z) and assume that equilibrium
quantities depend only on »(B,=0). We have de-
fined B=8/2¢,, ¥=¥/2%,, and $=%/29,. The
boundary conditions are (a=1) B40)=0, ¥(1)=0,

Now

b anlea-xe )= 6o @)

| ®(0)=0, and &(1) =%. This two-point boundary-

value problem has been solved numerically by a
shooting procedure. The numerical results are
qualitatively similar for aspect ratios from 10 to
1, and we have reported the results for R/a=5.
For any given A& (-, + «) there are two distinct
branches, which we have broadly classified as
“pinchlike” (P) and “tokamaklike” (7). In Fig. 3,
we compare the predictions of our theory with
recent experimental measurements of the F-60
trajectory [F=B,(1), =B (1)] during self-rever-
sal in ZT-40.°

Figure 4 shows a plot of V=2R™'W/(271®,) vs
R™'K/(27®,)? for the solutions. The point 0,
which corresponds to |x|=%, is a branch point
from which four solutions emerge. For a given
value of K/(27®,)? (V s/toroidal flux), the plasma
should prefer the lower-energy states indicated
by the solid lines. In fact, if experimental condi-
tions should drive the plasma to the higher-ener-
gy states indicated by the dashed lines, instabili-
ties would immediately set in, forcing the plasma
to lower-energy states. A preliminary examina-
tion of the stability of these states indicates
stable windows of operation for 6<0.2 and 1.6 < 6

xa Experimental Data
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FIG. 3. Comparison of theoretical predictions with
F-0 plot from two typical shots in ZT-40.
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FIG. 4. (a) Energy of equilibria in present theory
compared with energy of Taylor states (marked by A).
Arrows indicate direction of increasing A. Labels P
and T distinguish pinchlike and tokamaklike equilibria.
Dashed lines indicate unstable equilibrium (energy sta-
tionary, but not minimum). (b) Typical ¢ profile on the
stable P branch. (c) Typical g profile on the stable T
branch.

for R/a=5. The first window is “tokamaklike”
and the latter “pinchlike.” Figures 4(b) and 4(c)
show typical stable g profiles. The equilibrium
equations admit an expansion in powers of inverse
aspect ratio. The leading-order solutions are

N o R 8 (0
B.(n =1, Bdr ,,Zglx,,z(xnhzm) ()’

(3)

350

where ), corresponds to the solutions of Jy(x,)
=0, Equation (3) agrees very well with the num-
erical solutions for the ‘“tokamaklike” branch.

An important aspect of this theory is that it al-
lows a natural extension to equilibria with non-
zero pressure gradients, unlike the equilibria in
Taylor’s theory which are force-free even in the
presence of finite pressure. Details will be re-
ported elsewhere.
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