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isospin.
Although the quantum number H and the weak

isospin are defined unambiguously only for zero-
mass fermions where helicity and chirality are
equivalent, this restriction is irrelevant in all
the unified models under consideration, ' ' where
the quark and lepton masses are negligible on the
scale of the grand unification mass. A physical
process, such as proton decay or neutron-anti-
neutron oscillations, is described by combining
the B-nonconserving n-point functions at the
quark-lepton level with spectator quarks and pos-
sibly gluons to describe hadrons. However, all
these processes of building hadrons out of quarks
conserve B and L, and all the B and L noncon-
servation occurs in an n-point function at the
grand unification mass scale where the zero-
mass approximation is good. Thus even though
weak isospin, H, and the BL parity may not be
defined for the hadron states, the selection rules
for B and B —L conservation still apply.

As an example consider an initial nucleon state
described by the Massachusetts Institute of Tech-
nology bag model. The nucleon at rest does not
have a well-defined weak isospin, H, or ~~I, .
However, the bag model wave function is a state
of three zero-mass quarks, which can be ex-
panded in eigenfunctions of these quantum num-

bers, all with B =1 and L =0. The final state is
obtained by looking at all possible transitions al-
lowed by the particular weak decay model from
all terms in this expansion. If these are all four-
point functions which conserve weak isospin and
conserve H because they are vector exchange,
then they all conserve B —L. Thus all terms in
the expansion of the final state have B —L =1 and
the proton decay process conserves B —L.
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Using Monte Carlo methods with Wilson's lattice cutoff, the asymptotic-freedom scales
of SU{2) and SU(3) gauge theories without quarks are calculated.
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The standard SU(3) Yang-Mills theory of the
strong interaction is asymptotically free. ' The
effective coupling constant decreases logarithmic-
ly at short distances. This ultraviolet behavior
permits perturbative analysis of high-momentum-
transfer processes. In this paper, I present a

calculation of the parameters setting the scale of
this phenomenon in pure SU(2) and SU(3) gauge
theories.

In a non-Abelian gauge theory with an ultravio-
let cutoff, the bare charge g, goes to zero with
the logarithm of the cutoff parameter'

2=-
yn in(1/Ao'a') +(y, /yn) in[in(l/Ao'a )J+O(go')

'

Here y, and y, are the first two coefficients in the perturbative expansion of the Gell-Mann-Low func-
tion'

r(g. ) = adg, /da = rog. '+r,g, '+O(g. '). (2)
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The cutoff length a is the lattice spacing in a lat-
tice formulation. The parameter A, is the asymp-
totic-freedom scale associated with the renormal-
ization scheme being used. For SU(N) gauge
groups the coefficients in Eq. (2) are' '

-» (N/16p2)

34(N/] 6+2)2

(3)

(4)

A, = (1.3 ~ 0.2) x 10 '4K, SU(2);

Ao = (5.0 + 1.5) x 10 VK, SU(3).

(6)

(7)

Here I have used Wilson's lattice regulator' and
K is the string tension, the coefficient of the lin-
ear potential between widely separated sources
in the fundamental representation of the gauge
group. I will return later to the method of calcu-
lating these numbers.

At first sight these small numbers are rather
surprising, coming as they do from a theory with
no small dimensionless parameters. However
the value of A, is not independent of renormaliza-
tion scheme. ' Since it is defined in the weak-
coupling limit, perturbative calculations to one-
loop order can relate different definitions. Hasen-
fratz and Hasenfratz have recently done a lengthy
analysis relating this A, to the more conventional
scale A™defined by the three-point vertex in
Feynman gauge and at a given scale in momentum
space. Their results are

A ' =57.5A„SU(2); (8)

AMOM 83 5A SU(3) (9)

These large factors partially cancel the small
numbers in Egs. (6) and (7); combining them
gives

These first two coefficients are independent of re-
normalization prescription.

Etiuation (1) defines the scale A, and can be re-
written

1 /
2 —1

A, = lim —[(y g 2(a)) &- xi~mzo exp
g~o a 2ro go'(a)

(5)

My Monte Carlo results for these scales in the
pure gauge theories (no guarks) are

and use n' =1.0 (GeV) ', then we conclude for
gSU(3)

A =170+ 50 MeV. (13)

W(I, J)W(I-1,j-1)
W(I,J- 1)W(I- l, J) (i4)

In this combination overall constant factors and
perimeter behaviors of the loops mill cancel out.
For I» J» 1, X(I,J) is proportional to the force
between a quark and an antiquark separated by
distance Ja. The motivation for introducing y is
that in a region where the loops are dominated by
an area law

W(I, J)-e (i5)

where A = a'IJ is the loop area, it directly meas-
ures the string tension E

g» a'K. (16)

This happens both when I and J are large and
when the bare coupling is large. Homever in the
weak-coupling limit with I and J held fixed, X
should have a perturbative expansion

Some caution may be necessary in the phenome-
nological interpretation of this number because I
have not included effects of virtual quark loops.

I now turn to the method of calculation. For
SU(2) gauge theory I worked with a lattice of 10'
sites except at strong coupling where 8' sufficed.
I used the heat bath Monte Carlo algorithm of
Creutz. ' For SU(3) I used a Metropolis" scheme
similar in spirit to that employed by Wilson. "
This is inherently less efficient than the SU(2)
procedure; so most SU(3) running was on a 4'
lattice. One value of coupling, g,' =0.902, was
studied on a 6'-site system. As the SU(3) lattices
are rather small, the conclusions depend heavily
on an assumed similarity with the SU(2) case.

After bringing the lattice into a typical equilib-
rium state at'some value of the bare coupling
constant, I measured the expectation values of
rectangular Wilson loops W(I, J)where I 'and J
are the dimensions of the loop in fundamental lat-
tice units. From these loops, I construct the
quantities

A = (0.75+ 0.12)v'K, SU(2);

A = (0.42~ 0.13)v'K, SU(3).

(10)

(11)

X(I,~) = a, g.'+ o(Z.').
For example, a simple calculation gives

(17)

K =1/2m a' (12)

If we accept the string model' connection between
K and the Regge slope +' (~g,', sU(2)

x(1,1)„2-.~ ~g,', SU(3).
(18)
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-1. This is in excellent agreement with the se-
ries results of Ref. 12.

This research has been performed under Con-
tract No. DE-AC02-76CH00016 with the U. S. De-
partment of Energy.
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A search was made for five-quark ' pseudobaryon" and four-quark baryonium states with
a 1000-event sample of the reaction pp pppp at 11.75 GeV/c. For states with widths
&10 MeV/c and masses Mtr& &2.2 GeV/c and M&&& &2.4 GeV/c, upper limits on the
product of the cross section and the branching ratio for forward-hemisphere production
are measured to be -15 nb.

PACS numbers: 13.85.Hd, 14.2Q.Gk

In this Letter we report on an experimental
study of the reaction pp -pppp at 11.75 GeV/c
carried out with the effective-mass spectrometer
(EMS) at the Argonne zero grad-ient synchrotron.
Compared with topologically similar channels
such as p~'n p, the pppp final state is tluite rare
and we know of no previous measurements of this
reaction, although inclusive production of pp
pairs has been investigated at higher energies. '

Several experiments have searched for narrow
meson states, having a qqqq quark configuration,
that decay pref erentially into baryon-antibaryon
channels. "Although "baryonium" candidates
that couple to pp have been reported at 1932,
2020, and 2200 MeV, their existence is not well
established. ' Indeed, recent measurements of
the pp total cross section indicate that the rela-
tive couplings of these states to pp must be
small, ' opening to question their interpretation

as multiquark states. Analogous five-quark
(qqqqq) states with baryon quantum numbers have
been proposed, "which could be produced dif-
fractively in pp collisions. A possible signature
for these "pseudobaryon" states (P) would be
their cascade into a baryonium (B) plus a proton,

which would result in correlated peaks in the ppp
and pp mass spectra in our reaction. Even if the
8 states happen to have small branching ratios
into pp, the observation of a P- B cascade would
provide evidence that P and B are not ordinary
qq resonances. We note that evidence has been
presented for a possible S = —1 five-quark state
with a mass of 3.17 GeV/c' produced in K p col-
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