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course, with the electromagnetic field switched off) belong here.
On the other hand, the real slices of the complexified S(a, b, c/m) structures, completed by all their

limiting cases (contractions), are likely to cover all those Harrison metrics which admit two commut-
ing Killing vectors. The classification of the Harrison metrics being related to specific separability
criteria and having thus no direct geometrical interpretation, and the involved nature of the problem
of finding out all real slices of complexified S(a, k, c/m) structures —.ogether with their contractions—make the verification of the conjecture expressed above an interesting open problem.

It may be also conjectured that the S(a, 6, c/m) real structure taken as germinal (seed) solution with-
in the new Kinnersley-Chitre generating technique, ' most easily by use of the method of Ernst and
Hauser, "can induce solutions more general than those of the T-S family (see, for example, Refs. 12
and 13), at least some of them being of physical interest.

Helpful discussions with Dr. S. Alarcdn Gutierez, Dr. A. Dudley, Dr. Alberto Garcia, and especially
with Dr. F. A. E. Pirani are gratefully appreciated.
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The details of the process which led tog4 as an integral of t'~, =0, including a study of the conformal curvature

and the singularities, will be published elsewhere.
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The Boltzmann equation considered by Bobylev, and Krook and Wu (BEVY) is rewritten
in the form of a stochastic equation, similar in form to the kinetic equations of Tjon and

Wu, and Ernst. A new class of models, which reflects the transformation of the B~
model to other dimensionalities, is constructed, and its equilibrium distributions, non. —

equilibrium solutions (corresponding to the BKW mode), and H theorems are found.

PACS numbers: 05.20.Dd, 02.50.+ s, 51.10.+y

Following the discovery by Krook and Wu' and by Bobylev' of an exact solution to the Boltzmann equa-
tion for a spatially uniform system, other authors, including Tjon and Vfu' and Ernst and co-workers, ' '
have found related kinetic models that also allow exact solutions. These latter models are defined by
kinetic equations in the form of a stochastic equation which may be written

'""' = f;"dy S(y, t)f,"dzZ(z, t)p(y, z;x) F(x, t)f, dy Z(y-, t)f, dzI (x,y;z),
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where E(x, t) is the energy distribution function,
x =e'/2 is the kinetic energy, e is the velocity,
and t is time. I" does not depend upon direction
or position because the system is assumed to be
isotropic and spatially uniform. P(y, z;x) is the
transition or collision probability for the collision
y+z -x [the other particle having energy (y+z
-x)], and characterizes the particular model.
For example, the Tjon-Wu (TW) model corre-
sponds to (1) with P given by

In this discussion, we will always assume that
the units are chosen such that M, = 1, while the
value of M, will vary with the model.

The work of Bobylev and of Krook and Wu
(BKW) concerned the Boltzmann equation itself,
describing an isotropic system of Maxwell-like
molecules in which the scattering cross section
0 is inversely proportional to the relative veloci-
ty, and independent of the scattering angle 0:

P'~(y, z; x)=(y+ z) ', x&y+z. (2) (6)

Note that for all models I' must be zero when x
&y+z in order to conserve energy. The class of
models discussed by Ernst' corresponds to

F(2m) [x(y +z -x)]™1

I"(m)2 (y +z )2~

x & (y+z),

and Ernst and Hendriks' also considered the mod-
el P(y, z;x) =1. Note that, in general, P has the
symmetry

P(y, z;x) =I (z,y;x) =P(y, z;y+z -«) (4)

and that consequently (1) has two constants of mo-
tion, M, and M, (mass and energy), where

M„(t)=f, x"E(x,t)-dx. (5)!

Here f(v) =f(e, t) is the velocity distribution func-
tion, related to E by F(x, t)=4mvf(~, t), x=a'/2
In terms of F, the nonequilibrium solution to (6)
found by BKW is given by

2(x)' 'e " 5K —3 1-K
~'"K'" 2 K

where K-=1- exp(-t/6). The TW equation, al-
though much simpler in appearance, is intimate-
ly related to the BNV equation, such that solu-
tions of one can be transformed directly into solu-
tions to the other. '

I have found that the BKW equation, (6), may al-
so be written in the form of (1), and that P is giv-
en by

' arcsin[x/(y+z)]'~', 0&x &y

P "~(y,z;x) =(yz) '~'x arcsin[y/(y+z)]'~', y &x &z

, arcsin[1-x/(y+z)]'~', z & x &y+z

(8)

(for y &z). A derivation of (8) will be given in a
later paper, ' while a method of verifying it will
be indicated below. Note that (1) with (8) is a
much simpler equation for P(x, t) than (6), since
the former contains two one-dimensional inte-
grals, while the latter involves two- and three-
dimensional integrals, and implicitly, the scat-
tering dynamics. The BKW model can be stated
in (almost) as simple a form as the other models
above.

P clearly contains much more structure
than the P of the other models. It depends upon
the energies y and z of each particle entering the
collision, rather than upon just their sum (y+z)
as in (3)-(5). P is discontinuous (in the deri-
vative) at x =y and z, and is constant in between
these two values. In this interval, particles
leave the collisions with equally probable energy.
The integral of P " with respect to x equals uni-

f, P(y, z;x)dx=1,

the same as in models (2) and (3), implying that
the loss term of (1) is simply E(x, t).

Inspired by some of the above properties ofP, I construct a model in which P is defined

by

0, 0&x&y

P*(y,z;x)= !z-y! ', y&x&z.

, 0, x&z

(10)

In this model, the energy of the outgoing parti-
cles is restricted to lie in the interval bounded
by the incoming particles' energy. Using (1), we
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find that the moments satisfy the same equation,

F (x, t)= fo F*(z,t)z 'e "~'dz (12)

F '~(x t)= f"F+(z t)z "e "'dzBKW
o (13)

Thus, any solution F*(x,t) of the model defined
by (10) can be transformed to a solution of the
TW and BKW models. These formulas are con-
sistent with the relation between E and E
that has been given by Barnsley and Turchetti. '

It turns out that the transformation (13) has
been put forth by Alexanian" in a different con-
text, in which (13) reflects the representation of

as a superposition of Maxwell-Boltzmann
distributions of temperature z, 2( x/v)'~' z'~'e "~'.
This provides a physical interpretation of F~(z, t)
as the "temperature" distribution of the system.
Alexanian also derived a kinetic equation for E*,
Eqs. (2)-(3) in Ref. 10, and although his equation
is of a form much different from (1) and (10)
above, they can be shown to be equivalent.

The equilibrium distribution of this model is
given by

dM * n

+M *= QM. *M
dt " n+1,

as the renormalzggd moments of the BKW model, '
[2"n!/(2n+1).']M„, and also satisfied by the
renormslized TW moments, M„™/n! By virtue
of this relation between moments, I have derived
(using a Laplace-transform technique) the follow-
ing relation between the distribution functions of
these models:

~m-1
F( ~(x t)= f F*(z t)z e " 'dz

r(m) ~ (16)

with m = 1 and m= &, respectively. Considering
(16) for all m) 0 defines the new class. Using
(14) I find that the general equilibrium distribu-
tion is given by

F, ~ (x)=[x™1/r(m)]e " (17)

Evidently, the restriction that P* imposes on the
outgoing particles causes the distribution func-
tion to sharpen and eventually turn into a 5 func-
tion, at which time all particles have the same
energy or speed. By virtue of (13), the BKW
mode, (7), translates into the nonequilibrium so-
lution (also given by Alexanian)

F*(x,t) = 5(x -K) —(1 -K)(8/& x)5(x -K) (15)

for this model. Note that (15) is negative atx =K
for all finite time. Even though this model exhib-
its singular behavior, it might prove useful for
numerical studies, similar to those undertaken
on the TW model, ' to investigate the significance
of the BKW mode in the general approach to equi-
librium. The advantage of this model for numeri-
cal studies over the other models is that the dis-
tribution function here does not spread in energy
space as time increases, thus eliminating the
need to impose numerical cutoffs.

For the present purposes, the major signifi-
cance of the above model is that it can be used
to generate an infinite class of new models. We
observed that (12) and (13) can both be obtained
from the general equation

F,~*(x)= 5(x —1). (14) and using (15) I find the generalization of the
BKW mode:

xm -
le

- x /E 1-KF' &(x, t)=, „(K+mK m)+x-I'm~ " . K

The moments of this class are related to that of (10) by

M„' & =[r(n+m)/r(m)]M„*.

To complete the description of these models, the corresponding P must be found. The moment equa-
tion for M„ follows from (19) and (11), and assuming F (x, t) satisfies an equation in the form of (1),
with P~ ~ satisfying (9), a general moment equation can also be written. Equating these two, I find that
P must satisfy

„.„(), , r(m)r(m+n)~ y'z" '

n+1, , I'(i +m)I'(n —i +m) (20)

[which is consistent with (9)]. By various techniques, including the use of a Laplace transform, I
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have found that the I' are given by the following expresssions. The P are generally of the form

'q'" [x/(y+z)], 0&x &y

+ z)2m 3

P (Q~z~x) =
~ ~q [y/Q+z)]~ y «x &z (21)

(22)

(for m &1), or

~q(")[1-x/(y+z)], z &x «y+z

for y&z, inwhichP( ) is constantfory&x«z, and q( ) depends only uponx/(y+z). Note that (2) and

(8) are in this form, with q' =1 and q'~' =arcsinvu. In general, the q are givenby

q' '(u) =(m-1)f, [u(1-u)] 'du

P(y, z;x)—= (y z)™1P (y, z;x)
has the inverse collision symmetry

P(y, $ -y;x) =P(x, g —x;y)

one can readily show that the function

E' '(x t
H(t) = F')(x, t) ln — „,' dx

ap

(24)

(25)

(28)

satisfies dH/dt «0, thus proving the monotonic
approach to the equilibrium distribution (17).

This new class of models is very closely relat-
ed to the class considered by Ernst. According
to (22), q( ) is the incomplete )3-function while

TABLE I. Some explicit expressions for q~ ~ {u).

q ) (u)

1/2
1

3/2
2

S/2

(1 —2u)/I u(1 —u) j
1

arcsin ~u

u

(3/8){arcain u' —(1 —2u) [u(1 —u) ] 2)

u —(2/3) u

(„) u™11'(m) "(-u)'I" (f —m+ 2) sinn(m- 1+f)
Q

~!I'(m —1+i)

for m nonintegral. Explicit expressions for m= &,
1, 2, 2, -', , 3 are given in Table I. For example,
P is in the form of a, trapezoid. P' ~ has the
unusual behavior that it goes to~ atm=0 and y
+z; the increased production of particles at zero
energy leads to an equilibrium distribution
E,„'~' (x) = e */(wx)'~' which goes to ~ at x = 0. It
can be verified directly that (21)-(23) satisfy (20).
Incidentally, this serves as a way to verify that
(8) truly represents the BKW model, for in veri-
fying (20) for m = 2, one proves that (8) implies
the Krook-Wu moment equation, (ll) and (19).

Finally, an B theorem can be derived for these
models. With use of the fact that

(23)

Ernst's probability, (3), is the related P distribu-
tion. Of course, Ernst's model has none of the
discontinuities exhibited by (21). The equilibrium
distribution of Ernst's class is identical to (17)
and the H theorem goes through the same way,
since (yz) 'P ( ) also shows the symmetry of
(25). The generalization of the BKW mode is
identical to (18), except that now I( = 1 —exp(-)it),
where X =~/[2(2~ + 2)]. When m = 2, the two
classes coincide and both become the TW model.

Ernst derived his class of models as a repre-
sentation of "diffuse" scattering in a 2m-dimen-
sional system of Maxwell-like molecules. Note
that the energy distribution in a d-dimensional
system is related to the velocity distribution by
F(x, t) ~v" 'f (v, t) and therefore F,„(x)ccx"" 'e ",
in agreement with the equilibrium distribution
(17). In no way can a member of either class of
models P ~ or P@ represent a three-dimen-
sional model when me 2, in the sense that the
model follows from a three-dimensional Boltz-
mann equation, since the latter always gives, for
any expression for o, the equilibrium energy dis-
tribution E,„(x)ocx"'e ". The present class can
also be thought of as representing a 2m-dimen-
sional system, giving the TW model in two di-
mensions and the BKW model in three. The q™
listed in Table I therefore represent the dimen-
sionalities 1 through 6.

It should be noted that in a very recent paper,
Futcher and Hoare" have discussed a class of
kinetic models (describing a two-step collision
process) in which P is given by Products of in-
complete P functions. Like the class of models
discussed here, their model is nondiffusive in
that P(y, z;x) depends upon the individual values
of y and z rather than just y+z.

Further areas of research include the study of
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models for which (9) does not hold and instead
the integral of I' with respect to x depends upon

y and z. The model studied by Ernst and Hend-
riks' is one such model. For these so-called
non-Maxwell models, the loss term of (1) will
not be simply E(x, t) as in the models we have
discussed. In principle, the isotropic Boltzmann
equation can always be written in the form of (l)
with P represented by a certain integral of 0. It
would be useful if a practical form of this expres-
sion for P can be found.
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