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perature -dependent width.
The first two models which predict, respective-

ly, - 50% and -0% reduction in the exchange split-
ting slightly above 7'c must be resolved theoreti-
cally. The third model can be checked experi-
mentally by careful measurements of the tempera-
ture dependence of the width of an isolated sur-
face state on Ni close to the Fermi energy.

The measured splitting of the exchange-split
surface states at low temperatures is within ex-
perimental uncertainty equal to the measured
bulk splitting. We can estimate the possible de-
viation of the local magnetic moment at the sur-
face compared to the bulk using our data and a
simple model. The surface state is assumed to
decay exponentially into the bulk and only the out-
er surface layer is allowed to have a different
magnetic moment. If the surface state is totally
localized to the first layer then the uncertainties
in the surface and bulk measurements produce a
+19%possible deviation in the local magnetic mo-
ment at the surface compared to the bulk. If the
exponential decay length of the surface state is
(a) one, (b) two, or (c) three layers then the pos-
sible deviation grows to (a) -22%, (b) -30%, and
(c) -35%%d. Mos t calculation s forN i giv e adecay
length of states near the Fermi energy of from
one to three layers. "'"
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H. J. Schellnhuber and G. M. Obermair
Fachbe~eich Physik, Universita't Regensbuxg, D-8400 Regensbuxg, West Germany

(Received 31 March 1980)

For a simple nontrivial model potential, the full quantum mechanics of the Bloch elec-
trons in rational magnetic fields is reduced to a one-dimensional eigenvalue problem and

the exact diamagnetic band structure is calculated from first principles. Agreements
with and deviations from the predictions of the semiclassical Onsager dynamics are found
and discussed.

PACS numbers: 71.25.Cx, 75.20.—g

In spite of considerable efforts ' a first-principles justification for the so-called semiclassical
method for Bloch electrons in a magnetic field, i.e. , for the use of the effective Hamiltonian

H, gg =E„(p/8-eA/Kc)
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for a single band with dispersion E„(k),is still lacking. On the other hand, this semiclassical Peierls-
Onsager scheme has, over the last three decades, been used with the greatest success to extract pre-
cise band data from the different magneto-oscillatory effects for practically all materials. For a re-
view see Shoenberg. ' On the basis of previous work by our group, ' we have succeeded for the first
time in calculating from first principles the complete spectrum of Bloch electrons in a magnetic field;
we find magnetic subbands which are generally in excellent agreement with the semiclassical energy
levels, though only for nondegenerate bands. Thus our precise numerical results will illustrate both
the usefulness and the limits of the semiclassical method.

We start from the free-electron Hamiltonian in the symmetric gauge X = —,B(-y,x, 0):
2 B

H, =2 p„+' y + p, -' x +p,' =-'.a~.[(a "'p„/h+ a 'y) +(a p/8-'a 'x) ]+p /2m (2)
Vl I

with ~&, =eB/mc and a = eB/hc as usual.
Now apply the canonical transformation

Q =-a "'p,/h+-.'a"'x, q =a "'p,/h+-.'a"'x;
a"'y =P -p, a x=Q+q&

which preserves the canonical commutation rules [Q,P) =i and [q,p] =i; all other commutators vanish.
Then

Ho= 2h&u, [P +Q ]+p, /2m. (4)

Introducing as the simplest nontrivial example a two-dimensional square lattice potential in the x-y
plane with only two Fourier components,

H, „(p,p;Q, q) =H, + V = ,'h&u, [p'+Q'—]+2V,(cos[q'"(p-p)]+cos[q"'(Q+q)]),

where q =G'/a. Equation (5) still represents a two-dimensional problem. Presently a reduction to
one degree of freedom appears possible only for rational magnetic fields in the well-known sense (cf.
Brown' ), i.e. , e B/Kc = (2v/A)(L/N)R, where R is a lattice vector, 0 is the unit-cell volume, and N, L
are integers; hence &1 =2mN/L.

Since exp(+i&1''2p) shifts the argument q by + &1, L applications of this translation operator shift the q
argument of the second cosine in (5) by 2mN= Omod(2»)-. This repetitive structure allows a separation
sensate

(5)

V(x, y) =2V, (cosGx+cosGy), G =2&T/a,

we obtain with (4), omitting the trivial motion in the e direction altogether, the equivalent Hamiltonian

[for the choice of (,. (q) see Obermair and Schellnhuber'], which reduces (5) to a set of Lx L matrix
operators in the (P, Q) degree of freedom.

In the following we treat exclusively the "pure case" L = 1 in the sense of Ref. 6. The separation
then yields a set of one-dimensional equivalent Hamiltonians

H(P, Q; q; ~, y) = ,h~, [P'+Q']—+2V,(cos[71"'(Q +Z)]+ cos[q'"(P —»)]],
where the separation constants v, Xa[- m/v &l, m/

»'q] may be interpreted as the components of a
wave vector spanning the magnetic Brillouin
zone. ' For fixed (z, X) the eigenvalue problem of
(6) can be shown to have a discrete spectrum;
variation of the wave vector then produces the en-
tire magnetic subbands.

On the basis of analytic expressions for the ma-
trix elements of (6) with respect to the eigenfunc-
tions of —,(P'+Q') we have thus calculated the

! first-principles band structure in a homogeneous
field by the variation method to a very high nu-
merical precision.

On the other hand the exact dispersion of the
zero-field Hamiltonian

H &, = —h'[8„'+8,']/2m+ 2V,[cosGx+ cosGy]

has been evaluated (two-dimensional Mathieu
bands). This allows us to determine analytically
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FIG. 1. Left: Z ero-field bvo-dimensional Mathieu
band energies e as functions of strength Vs of the peri-
odic potential. Right: Diamagnetic band structure
from first principles for N =8 over the same Vo domain.
e and Vo give the electronic energy and the potential
strength in units of 2 eV.

FIG. 2. Same as Fig. 1, but out to higher strengths
of the periodic potential and for N =1. Notice the split-
ting of doubly degenerate bands by the magnetic field.

both the "naive" semiclassical spectrum, result-
ing from the Bohr-Sommerfeld quantization of
the magnetic k-space orbits, and, with the aid of
previously developed special methods, ' the quan-
turn-mechanical Peierls-Onsager spectrum, i.e. ,
the eigenvalues of H, ff of Eg. (1).

Figures 1 and 2 illustrate the comparison of the
zero-field bands with the exact spectrum and of
the latter with the semiclassical spectrum. They
contrast stability maps of the Mathieu bands with
those of the first-principles magnetic subbands
as a function of the periodic potential strength V,
for two values of the magnetic field: N= 8 (&-10'
G) and pT = 1 (B- 10' G). The pure discrete Lan-
dau levels at V, =0 are first strongly broadened
by the potential (Landau regime, cf. also Neu-
mann and Rauh'), overlap for larger V, (regime
of magnetic breakdown), and finally separate
again into narrow magnetic subbands, which are

grouped together to Mathieu bandlike complexes
(Onsager regime).

Position and fine structure of these complexes
reflect properties of the corresponding Bloch
bands: Nondegenerate bands, e.g. , the lowest
one in Figs. 1 and 2, are split into precisely N
subbands in the case of our special rational fields,
which as a rule —lie within the edges of the
zero-field band. This agrees fully with group
theory and the effective-Hamiltonian concept.

Figure 3 contrasts the first-principles calcula-
tion of the magnetic fine structure of the lowest
(nondegenerate) Mathieu band with the results of
the quantum-mechanical treatment of the Peierls-
Onsager effective Hamiltonian H, « for a repre-
sentative choice of parameters. Shifted some-
what in absolute position, the two spectra never-
theless show excellent agreement with respect to
their intrinsic structure (distances and widths).
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Upper Mathieu-Band-Edge
-11.580161

fields into two complexes of N magnetic subbands.
For N= 1 this is clearly visible for the second
lowest band in Fig. 2, whereas in Fig. 1 only the
onset of the splitting appears for the highest V,
covered. The two complexes extend well beyond
the edges of the zero-field band and can in no

way be described by semiclassical methods.
Thus our exact first-principles results serve

to confirm the validity of the quantum-mechani-
cal version of the Peierls-Onsager method and
-- as far as the position of the centers of the mag-
netic subbands is concerned a,iso of the semi-
classical version, but only for nondegenerate
bands.

For degenerate bands the effective-Hamiltonian
methods do not work, at least in the very high
magnetic fields considered here. Our methods,
which can be extended in principle to more com-
plicated crystal potentials and magnetic-field ori-
entations, will permit the evaluation of the dia-
magnetic band structure in all cases. A detailed
account will be given in a forthcoming paper.

Lower Mathieu-Band-Edge

-11.600092

A significant deviation from semiclassical be-
havior, however, occurs in the Onsager regime
for degenerate zero-field bands: For sufficient-
ly large periodic potential doubly degenerate
Mathieu bands are split by very high magnetic

FIG. 3. Magnetic fine structure of the lowest Math-
ieu band for N =5 and V0=5.0. Left: Exact first-prin-
ciples fine structure. Right: Spectrum of the Peierls-
Onsager one-band effective Hamiltonian in quantum
mechanical treatment.
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