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scattering amplitude is split into two parts corresponding to ionization before and after compound-nu-
cleus formation.

An expression for the ratio of scattered protons with and without simultaneous ionization is obtained
by combining Etls. (2) and (3}:

N, ~
2+D '[exp —i()] [sin5(E') expi5(E')+ sin5(E) expi&(E)] ~'

~1+ C 'sin5(E)expi[5(E) —y] ~' (4)

The fit of the measured ratio with formula (4) is
shown in Fig. 1(b); only D and p are varied while
C and L9 are determined from the fit of the singles
yield with formula (2). The following values are
found: D=-0.62+ 0.05 and 6=0.20&0.06 rad.
The inequality of the parameters D and C and of
the parameters 6 and y, respectively, shows that
the Coulomb scattering and the nuclear resonant
scattering interfere in a different way for the
case with and without simultaneous K-shell ioni-
zation.

We conclude, therefore, that the phase change
observed is due to the influence of dipole and
higher-multipole ionization amplitudes, causing
angular momentum exchange, on the combined
process of inner-shell ionization and the scatter-
ing of the ionizing particle from the nucleus. This
influence manifests itself through the change of
the impact-parameter-dependent ionization prob-
ability in the neighborhood of a nuclear scattering
resonance; or, formulated in a different way, in
the change of the shape of a nuclear s-wave reso-
nance when measured with or without simultane-
ous K-shell ionization. In the study of time-delay
effects in compound-nucleus formation, this ef-

! feet should be taken into account.
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A calculation is presented of the relaxation rate T, ' between the lowest two hyperfine
states of a dilute gas of H atoms in high magnetic field at low temperatures. Dipole-
dipole interactions dominate T&, leading to long relaxation times at low temperatures
(T& = 10 nHT sec at H = 100 kG). The recombination rate due to wall collisions
is much greater than T&

' and can lead to a depletion of the lowest hyperfine state from
thermal equilibrium and an effective recombination rate equal to T,

PACS numbers: 34.10.+x

Recently, two groups have stabilized samples
of spin-polarized atomic hydrogen (H)). Silvera
and Walraven' have obtained densities up to 5
x10' cm Bt 0.27 K, and Cline et al. report
densities up to 10" cm ' at 0.30 K, both in high
magnetic fields, with holding times of greater

than an hour. These conditions are now close to
those necessary for Bose-Einstein condensation.
Siggia and Ruckenstein's recent Letter' on the
properties of Bose-condensed H ~ predicts the
formation of a two-component superfluid, with
each component consisting of atoms in one of the
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—e ~&'f) (0 electron and +proton spin) contains a
small admixture & of spin-up electron, whereas
the other state ibk f) is a pure Zeeman state.
In high field, the admixture constant e is approxi-
mately given by e =a/(2p, II,) where a is the zero-
field hyperfine splitting. Also at high fields, spin
exchange does not equilibrate the proton spins be-
cause the electron and proton systems are effec-
tively decoupled. This leaves the dipole-dipole
interaction as the only other feasible mechanism
for relaxation.

By assuming a two-level system we relate the
relaxation rate, T, ', to the transition rates for
the various two-body elastic collisions, +,. Con-
sidering the rate of change of the population dif-
ference in the high-temperature limit, we find

two lowest hyperfine states of hydrogen. The de-
generacy temperature for each component is sim-
ply related to the density of atoms in each of the
two hyperfine states, and a fundamental assump-
tion of their theory is that the relative populations
of the states do not equilibrate, i.e. , that T, is in-
finite for these two levels.

Experimental work in our own laboratory has
focused on magnetic resonance studies of atomic-
hydrogen gas at low temperature, ' and thus it is
important for us to understand how the H-atom
spins come to thermal equilibrium. We have also
suspected for some time that the recombination
rate of H atoms into H, molecules is sensitive to
the relative populations of the hyperfine states,
and hence that the recombination rate might de-
pend on T 1 . A theory of this dependence is given
below. The main result of this Letter, however,
is the Ty calculation which gives the temperature,
fiel
rat

A
fiel
pre

T i = 4 ((d i + (d 2) q

d, and density dependence of the relaxation where &u, =~(a, b;a, a) =~(a, b;b, b), as we will
e of the two lowest hyperfine levels of H~. show later, and &u, =co(,aa;b, b). Here ~(a„cr,;
t low enough temperatures, in a high magnetic o, ' o, ') is the rate of transitions for two atoms
d, only the lowest two hyperfine states are ap- initially in hyperfine states a, and o, into hyper-
ciably populated. The lowest state, i a) = i&+) fine states cr, ' and a, '. By using the distorted-

wave Born approximation, we have

&u„(a„o,; a, ', o,') = N(2rr/h)(1/47r) fdQ„dQ, i(%'; cr, 'rr, 'i P,t& ~ P, i%;cr„v )i 'p~(k), (2)

H« =5 y, y&(12rr/5)' Q [T,~ —(y, /y&)T„] Y, (0»)/R»',

where II« is the dipole-dipole Hamiltonian, pz(k) the final density of states, and P, the operator which
projects out the properly symmetrized two-atom states. These states will have total nuclear spin I,
total electron spin S, and angular momentum l. The Pauli principle for protons and electrons is satis-
fied if I+S+l is even.

Before evaluating the spin matrix elements, consider which dipole-dipole interactions are important.
The strongest interaction which flips the proton is the electron-proton interaction, H«'~~+y, yp. For
the electron it is the electron-electron interaction, H«" ~ -y, . Therefore, the total interaction
Hamiltonian is

where

T, =S'(1)I (2)+S'(2)I (1); T„=S'(1)S (2)+S"(1)S'(2).

Y', (0) is a spherical harmonic and R» the distance between the two colliding atoms, 1 and 2.
We are going to keep the leading terms of order y, y~ and &y,

' but discard terms of higher order in
e and y~/y, . The only nonzero matrix element involving the singlet interaction (S =0) occurs in ~(a, a;
b, b), is of order ey, y~, and will therefore be ignored. This term corresponds to a simultaneous pro-
ton-electron spin-flip (,(0,0i S~(0, 0i II«i 1,—1),8 i 1,—1)~) and also involves a change from the triplet
to singlet potential during the collision. All the other terms of interest have I =S =1. Therefore, the
atoms interact via the triplet potential and l must be even.

The spin matrix elements are

(a,al [T., ' —(r. /r, )T..'1
I a, b) =(1/«)[1+ey. /y, ],

(b, bi [T,r, ' —(y, /y&)T„'] i a, b) = —(1/v'8)[1+ay, /y&].

(4a)

(4b)

Also, co, =0 since it contains only terms of higher order. Now we must evaluate the square of the spa-
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tial matrix element

M(&) = fd&, «, 1$'I&,'(&„)R„'I&&I'. (5)

Following the procedure outlined by Shizgal, ' we evaluate M(k) after solving for the spatial wave func-
tion by using standard partial wave analysis. The triplet potential used here is a fit to the Kolos and
Wolniewicz potential. '

The radial wave equation is solved numerically for given 0 and l and the resulting wave function,
u, (k, R»), is used to evaluate

64r3
M(k) =, Z (2l +1)(2l'+1)C'(ll'2;00)r. ..'k ',

g, g' even

where

rg ~, i =f dR,@,(k, R,2)u, .(k,R»)R„'.
The only two terms which feel the potential at the low energies of concern here, & 0.6 meV, are the
ro2 and x» terms. These values are obtained numerically and the asymptotic form' is used for the rest
of the r, , , terms.

Once this is done, the relaxation rate can be written in the form

T, ' =n„v „i~P f e o,f~(E)E dE, (8)

where nH is the atom density, v„i the average relative thermal velocity, P =(kT) ', and

o',ff = (48&/25)p'y, 'y~'[1+eye/y~]' Q (2l +1)(2l'+1)C'(ll'2; 00)r» 'k ',
l, l ' even

H+H+H- H2+H,

and wall processes where

H+H+wall- H, +wall.

(12)

where p is the reduced mass. In order to per-
form the thermal average, we evaluated o,ff(E)
for 0.001 meV&E &0.6 meV. This results in O, ff
of the form o,fq(E) =a +bE. After performing the
thermal average, we obtain

y - i =p 956x10-4Tii2 0.105g10-4y'i2 sec- i

(10)

for II, =100 kG and nH =10" cm '. This expres-
sion is valid up to the point where o,ff becomes
nonlinear () 2 K) and down to - 50 mK where the
collisions become inelastic. For other values of
field T, ' scales with [1+ay, /y~]'.

Now that the relaxation rate has been deter-
mined, let us consider the recombination proc-
esses. At 1.0 K, where there is a substantial
'He density (if we assume the sample container
walls are coated with a 'He film), the dominant
process involves bulk collisions where

H+H+'He- H, +'He.

The rate constant for this process has been meas-
ured by Hardy et al.4 Below 1 K other processes
dominate the recombination rate. One must con-
sider three-body bulk collisions where

The rate constants for these processes are not
known but one can extract an estimate from the
bulk-'He value.

This is done by assuming an effective kinetic
cross section whereby recombination always oc-
curs when the necessary atoms are within a cer-
tain volume. We obtain a cross section of - 34 A'
from the bulk-'He rate constant and will now as-
sume that this value applies to the other recom-
bination processes as well as assuming it to be
temperature independent.

Recombination of two H atoms requires that
they interact via the singlet potential since only
the singlet potential supports bound states. For
Hi the population of the upper two hyperfine states
is low enough to be insignificant. However, the
admixture in i a) is large enough for reasonable
values of H, that it becomes the dominant source
of recombination. We will use this assumption
in determining the various rate constants for re-
combination in a high magnetic field.

In order to determine the rate constant for the
wall processes, the surface density must be cal-
culated. For low enough surface density this can
be done by assuming the simple model given by
Edwards and Mantz. ' The surface density is giv-
en by

o'H =n HA exp+~/kT ),
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whel e = 71 vlA =5/(2mmkT)' ' and Es is the binding en-
illergyof H ona e u4H surface. This expression wi

be valid until the interatomic interactions limit
the surface density, ' at about 10"cm '.

Two values for E~ are used heere. Mantz and
Edwards' give a lower limit of

!=0.
6 K whereas

Guyer an id M lier' calculate E~ =0.1 K. By using
tthe above i orm'nf ation we find that the dominan

recombination mechanism involves collisions be-
The initial ratetween two atoms on the surface. e ini i

' =Kn t =0 is giv-constant for this process, 7 =KnH
en by

(l4)

mechanism ean equilibrate the two populations.
Therefore, state !a) is almost depleted and re-
combination occurs only as fast as relaxation
can transfer atoms from! b) to!a). The asymp-
totic behavior of n, (t) and nb(t) is given by

n. (t) = (K.../K. ..)n, (t) (tea)

n, (t) =n„T/t +~, (16b)

kT n (0).'=4 54&&10 "T ' "A/V)[ 'e-'+exp(-y II /kT)]exp(2E~/ ) H

' . 1 for7 ' is plotted versus temperature in Fig.
both values of E along with the relaxation rate

a ]

Finally, let us consider the population dynamics
of the quasi-two-level system of H~ under the in-
fluence of both recombination and relaxation.
Considering wall recombination only, the rate
equations for the two populations are"

dn, /dt =-K,eena(2na+np) Kre/( a ny)(na+ny) r

(l5s.)

dn /dt =- K„,n, n e+ K„((n,- ne)(n, +ne). ( ),15bdna

We will now discuss two limiting eases, the first
K «K,&. In order for two atoms to re-rec re& ~

combine, one must be in a state
~ a/. is av

a heavier depletion of !a) than of ! b) but since
relaxation rate is fast, the two states remain
equally populated. Therefore, the two popula-
tions follow the rate equation dn/dt =- Kn', with
a rate constant &roc.

The other limit, K«c»K«~, appearars to be the
case at low temperatures. Here the atoms in

( ) '=2K n being the population oofwhere 78,p re]. y yp

hes the! 5) at which the actual solution approaches t e
asymptotic so u ion. nI t' In this case n, (t) follows the
rate equation or waf all recombination but with the

]rate constant =T,
In light of these results Bose condensation

should occur first for atoms in state ! 5) and per-
haps no at t all for atoms in state a). With re-

H bt th discussion of Bose-condensed H~ y
f the two-Siggia and Ruekenstein, ' it appears as if the wo-

com onent superfluid will not be formed.componen
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