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By using a thermodynamic analysis, it is shown that a horizontal layer of the He- He
superfluid mixture heated from below is unstable with respect to oscillatory convection.
The neutral oscillations of this overstability are undamped standing second-sound waves.
Estimates show the possibility to observe the predicted effect experimentally in the
vicinity of the tricritical point of the He- He mixture.

PACS numbers: 67.60.-g, 67.40.Pm

Perturbations of a noncompressible superfluid
'He-'He mixture lead to the appearance of second-
sound waves which decay rapidly. The situation,
however, changes if the system is heated from
below. As shown in this note, the second-sound
wave becomes an undamped standing wave. This
wave is a neutral oscillation of the convective
over stability.

A 'He-'He superfluid mixture is an interesting
object for the study of the convective instability
because of the high attainable temperature reso-
lution and the low heat transport. ' Moreover,
the thermodynamic and kinetic properties of this
mixture vary by several orders of magnitude with-
in the 'He-'He phase diagram between the A. line
and the coexistence curve.

An analysis of stationary and oscillatory insta-
bilities in the 'He-'He superfluid mixture by the
standard methods will be published elsewhere. "
Here, we discuss only one branch of the convec-
tive instability in this system which is, in fact,
the undamped second-sound wave. It is well known
that in the 'He-'He superfluid mixture in contrast
to pure He II a temperature gradient can exist in
equilibrium. This temperature gradient leads to
a corresponding concentration gradient, so that
the superfluid 4He component moves to the warm
boundary and, therefore, the light 'He atoms are
concentrated near the cold boundary. This un-
usual distribution of concentration with height is
a result of the superfluidity. A similar concen-
tration distribution occurs in binary mixtures

with a, large abnormal thermodiffusional (Soret)
effect, k~) 0.' Such systems are unstable with
respect to stationary convection when they are
heated from above and with respect to oscillatory
convection when heated from below. " The oscil««

latory instability, in this case, appears as a re-
sult of an interaction between the diffusion and
thermal modes. The physical nature of the oscil-
latory instability in the 'He-'He superfluid mix-
ture is absolutely different. Here the oscillatory
instability manifests itself as a second-sound
wave mode. For this mode to be undamped, the
rate of supply of energy by the buoyancy force has
to balance the rate of wave dissipation. This
qualitative statement can be formulated in a quan-
titative form by using Chandrasekhar's thermo-
dynamic principle. '

For the sake of simplicity, we consider a hori-
zontal layer with free boundaries a distance l
apart. Following the usual linear stability analy««

sis, we linearize the two-fluid hydrodynamic
equations for the superfluid mixture. ' We ex-
press the small perturbations of the vertical com-
ponent of the normal velocity, V„,', the entropy
per one gram of 'He, 0', and the chemical poten-
tial of the 'He atoms, p4', in the form

«+

[V„,';v'; p, ' ] = (V, v, $)e'"' ' cos(wz). (1)

The dependence on coordinates in Etl. (1) is cho-
sen in accordance with accepted free boundary
conditions.

The linearized convection equations can be
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transformed to the form'

——(&'+k') = ()T'+k')V+k' VR,o'+I.
0

, +~Pr '(~'+k') —+~,'(7)'+k') g

s(m +k )—,NR~ Ep

I 8t '

8o, , Ld lP, +(~—'+k')~ = - V — — (w'+k')g.'8t N„ l,
Here we use the symbols

(2)

The variables V, 0, $, t, and z in Eq. (2) are
scaled by Xl ', (d/dz)l, gl, p„l'/g, andi, re-
spectively.

Let us note that two assump'tions are made in
the hydrodynamic equations (2). Firstly, we as-
sume that dissipation of the superfluid motion is
small, p„(f, pf—,)/q(1. Secondly, it is assumed
that dissipation of a normal motion is also small,
(l,/l)'(1. Then in the Navier-Stokes equation
there is used divV„=O. ' To find an oscillatory in-
stability, we look for a solution of the problem in
the form

+0 '
X V = v cos({dt). (4)

1 8p pgl do,
p ~ Bo' ~ p 7[K dz

X

pcT 80'

=7jl&/gp„ I Pr ='g/p„K, PB ='g/p„D,

gl 8p n~ P~ ad

On substituting (4) into the second and the third
equations of (2), one obtains

o =A cos(&ut) +B sin(~t),

$ =E cos(&ut) +E sin(cA),

p. (&e/&o)~. ),
c (sp/sv)

k~ (»/eo)~, ),
T (sc/s{))~ „,

T (&c/&V. )&,.
(&T/8 p,)~, (Bp/ao)~, „,
(sT/s(x) „, (ap/sp, )

nP~L p„ l

p„(sc/~ p,)~,
c (ep/sp, )

where the coefficients A, B, E, and E are func-
tions of the parameters defined in Eq. (3).

According to Chandrasekhar, ' oscillatory con-
vection will appear when the oscillating rate of
change of kinetic energy per unit volume E, is
balanced by the viscous dissipation rate E„(with
a 90 phase lag with respect to the change of ki-
netic energy) and the rate of energy production
by the buoyancy force E~, i.e.,

E, =E„+E

All the functions in Eq. (6) can be found from
the first equation in (2), and we obtain

0

1/2

- X/2
V„,—aV„, dz = —,(m'+k')v'{d eos({dt) sin(a)t),

8 1 2
(Va)

E„=J „,V„,&'V„, dz = 2 ())'+k')v' cos'(~t), (Vb)

0

E
I/2 d l 3

V —div-4 N o'+L —p ' dzng d Ra l 4
X/2

3
g

3
=-,B c coo{tot) ANR, +itL — coo{tot)+ BNs+BL —

. ,sic{tot)I.
0 0 I

(7c)

(6)

Let us note that in the case considered here
(~'+k')'/Pr ~,'«1, since we neglect the diffusion
and the thermal modes. From Eqs. (7b) and (7c),

The cos'({t)t) term in EB in Eq. (7c) is offset by
the viscous dissipation Eq. (Vb), while the eos({L)t) here only to the second-sound wave branch of the
x sin(&ut) term balances an oscillation of the ki- instability, we find from Eqs. (Va) and (Vc) that"
netic energy of the viscous fluid described by Eq.

{d = {t){) 7T +k(7a). Thus one obtains two equations for the eriti-
cal Hayleigh number, NR,'", which determines
the onset of convection and the frequency of the
overstable motion ~ . Restricting our attention
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The result Eq. (9) is confirmed, of course, by
the genera, l linear stability analyses. '

After minimizing Eq. (9) in k, one obtains the
condition for the onset of overstability

NR "=4m at ko=m',

and the neutral oscillation frequency

CO +
= 2p (d 0 ~

(10)

Since +,'&0, it is clear that NR,"'&0, i.e. , the
oscillatory instability in the horizontal layer of
the superQuid 'He- He mixture appears when it
is heated from below.

Let us show now that +, is the frequency of the
standing second-sound waves. The velocity of the
second-sound wave in an incompressible fluid
mixture in the variables P, 0, and p4 is equal to

p~ ~ jl4

Thus the characteristic frequency is given by

Pn BC p ~
(13)

Equation (13) is the same as the dimensional
form of +, in Eq. (3). Now I would like to empha-
size here that the criterion (9) is proportional to
the square of frequencies ratio

where w '= (g/p„)(sp/so)~ „do,/dz is the inter-
nal-gravity-wave frequency. ' This expression
is very different from usual Bayleigh criterion
that consists in the relation between the buoyancy
force and stabilizing dissipation factor. It fol-
lows from more detailed analysis' that the effect
considered can only be observed in the vicinity of
the tricritical point (T, x,).

Using the well-known singularities of the ther-
modynamic and kinetic properties nea, r the tri-
critical point of the 'He- He mixture, "one can
easily find the following expressions for the cri-
teria of the onset of the oscillatory instability
and for the appropriate neutral frequency:

Na,"'= 10 'l'(dT Jdz)~, ',
2 4X ]08)-2~

with e, = 1 —T/T, . For l= 5 cm and e, = 10 ', one

one obtains the Hayleigh number which deter-
mines the onset of the oscillatory instability:

3
~n+ ] + c 1 T (9)l p, n P~ —adP, , '

obtains for the critical temperature gradient and
the neutral frequency

dTO/dz =10 ~ K/cm, ~ =100 Hz. (15)

Therefore, it should be possible to observe the
effect predicted above in the vicinity of the tri-
critical point of the 'He-4He mixture.

After completion of this work, experimental
results were published" which show the possibil-
ity of stationary convective instability in dilute
'He-4He mixtures.

I am very grateful to M. Gitterman for his com-
ments.
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